Cargando…
Successive redox-mediated visible-light ferrophotovoltaics
Titanium oxide materials have multiple functions such as photocatalytic and photovoltaic effects. Ferroelectrics provide access to light energy conversion that delivers above-bandgap voltages arising from spatial inversion symmetry breaking, whereas their wide bandgap leads to poor absorption of vis...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031293/ https://www.ncbi.nlm.nih.gov/pubmed/32075971 http://dx.doi.org/10.1038/s41467-020-14763-6 |
Sumario: | Titanium oxide materials have multiple functions such as photocatalytic and photovoltaic effects. Ferroelectrics provide access to light energy conversion that delivers above-bandgap voltages arising from spatial inversion symmetry breaking, whereas their wide bandgap leads to poor absorption of visible light. Bandgap narrowing offers a potential solution, but this material modification suppresses spontaneous polarization and, hence, sacrifices photovoltages. Here, we report successive-redox mediated ferrophotovoltaics that exhibit a robust visible-light response. Our single-crystal experiments and ab initio calculations, along with photo-luminescence analysis, demonstrate that divalent Fe(2+) and trivalent Fe(3+) coexisted in a prototypical ferroelectric barium titanate BaTiO(3) introduce donor and acceptor levels, respectively, and that two sequential Fe(3+)/Fe(2+) redox reactions enhance the photogenerated power not only under visible light but also at photon energies greater than the bandgap. Our approach opens a promising route to the visible-light activation of photovoltaics and, potentially, of photocatalysts. |
---|