Cargando…
scCATCH: Automatic Annotation on Cell Types of Clusters from Single-Cell RNA Sequencing Data
Recent advancements in single-cell RNA sequencing (scRNA-seq) have facilitated the classification of thousands of cells through transcriptome profiling, wherein accurate cell type identification is critical for mechanistic studies. In most current analysis protocols, cell type-based cluster annotati...
Autores principales: | Shao, Xin, Liao, Jie, Lu, Xiaoyan, Xue, Rui, Ai, Ni, Fan, Xiaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031312/ https://www.ncbi.nlm.nih.gov/pubmed/32062421 http://dx.doi.org/10.1016/j.isci.2020.100882 |
Ejemplares similares
-
Identify differential genes and cell subclusters from time-series scRNA-seq data using scTITANS
por: Shao, Li, et al.
Publicado: (2021) -
scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network
por: Shao, Xin, et al.
Publicado: (2021) -
scAnnotate: an automated cell-type annotation tool for single-cell RNA-sequencing data
por: Ji, Xiangling, et al.
Publicado: (2023) -
scLM: Automatic Detection of Consensus Gene Clusters Across Multiple Single-cell Datasets
por: Song, Qianqian, et al.
Publicado: (2021) -
Single-cell Iso-Sequencing enables rapid genome annotation for scRNAseq analysis
por: Healey, Hope M, et al.
Publicado: (2022)