Cargando…
Development of Supervised Learning Predictive Models for Highly Non-linear Biological, Biomedical, and General Datasets
In highly non-linear datasets, attributes or features do not allow readily finding visual patterns for identifying common underlying behaviors. Therefore, it is not possible to achieve classification or regression using linear or mildly non-linear hyperspace partition functions. Hence, supervised le...
Autores principales: | Medina-Ortiz, David, Contreras, Sebastián, Quiroz, Cristofer, Olivera-Nappa, Álvaro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031350/ https://www.ncbi.nlm.nih.gov/pubmed/32118039 http://dx.doi.org/10.3389/fmolb.2020.00013 |
Ejemplares similares
-
Generalized Property-Based Encoders and Digital Signal Processing Facilitate Predictive Tasks in Protein Engineering
por: Medina-Ortiz, David, et al.
Publicado: (2022) -
Editorial: AI in Biological and Biomedical Imaging
por: Gao, Xin, et al.
Publicado: (2021) -
Peptipedia: a user-friendly web application and a comprehensive database for peptide research supported by Machine Learning approach
por: Quiroz, Cristofer, et al.
Publicado: (2021) -
Integrating Venom Peptide Libraries Into a Phylogenetic and Broader Biological Framework
por: Chase, Kevin, et al.
Publicado: (2022) -
Semi-supervised segmentation of metastasis lesions in bone scan images
por: Lin, Qiang, et al.
Publicado: (2022)