Cargando…

The orbitofrontal cortex functionally links obesity and white matter hyperintensities

Many studies have linked dysfunction in cognitive control-related brain regions with obesity and the burden of white matter hyperintensities (WMHs). This study aimed to explore how functional connectivity differences in the brain are associated with WMH burden and degree of obesity using resting-sta...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Bo-yong, Byeon, Kyoungseob, Lee, Mi Ji, Kim, Se-Hong, Park, Hyunjin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031356/
https://www.ncbi.nlm.nih.gov/pubmed/32076088
http://dx.doi.org/10.1038/s41598-020-60054-x
Descripción
Sumario:Many studies have linked dysfunction in cognitive control-related brain regions with obesity and the burden of white matter hyperintensities (WMHs). This study aimed to explore how functional connectivity differences in the brain are associated with WMH burden and degree of obesity using resting-state functional magnetic resonance imaging (fMRI) in 182 participants. Functional connectivity measures were compared among four different groups: (1) low WMH burden, non-obese; (2) low WMH burden, obese; (3) high WMH burden, non-obese; and (4) high WMH burden, obese. At a large-scale network-level, no networks showed significant interaction effects, but the frontoparietal network showed a main effect of degree of obesity. At a finer node level, the orbitofrontal cortex showed interaction effects between periventricular WMH burden and degree of obesity. Higher functional connectivity was observed when the periventricular WMH burden and degree of obesity were both high. These results indicate that the functional connectivity of the orbitofrontal cortex is affected by the mutual interaction between the periventricular WMHs and degree of obesity. Our results suggest that this region links obesity with WMHs in terms of functional connectivity.