Cargando…
Dietary supplementation with spray-dried porcine plasma has prebiotic effects on gut microbiota in mice
In animal models of inflammation and in farm animals, dietary inclusion of spray-dried porcine plasma (SDP) reduces mucosal inflammation. Here, we study whether these effects could be mediated by changes in the intestinal microbiota and if these changes are similar to those induced by oral antibioti...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031359/ https://www.ncbi.nlm.nih.gov/pubmed/32076042 http://dx.doi.org/10.1038/s41598-020-59756-z |
Sumario: | In animal models of inflammation and in farm animals, dietary inclusion of spray-dried porcine plasma (SDP) reduces mucosal inflammation. Here, we study whether these effects could be mediated by changes in the intestinal microbiota and if these changes are similar to those induced by oral antibiotics. Weaned 21-day-old C57BL/6 mice were divided into 3 groups: the CTL group, fed the control diet; the COL group, administered low doses of neomycin and colistin; and the SDP group, supplemented with 8% SDP. After 14 days, analysis of the fecal microbiome showed that the microbiota profiles induced by SDP and the antibiotics were very different, thus, SDP has prebiotic rather than antibiotic effects. At the phylum level, SDP stimulated the presence of Firmicutes, considerably increasing the lactobacilli population. It also enhanced the growth of species involved in regulatory T-lymphocyte homeostasis and restoration of the mucosal barrier, as well as species negatively correlated with expression of pro-inflammatory cytokines. At the mucosal level, expression of toll-like receptors Tlr2, Tlr4 and Tlr9, and mucous-related genes Muc2 and Tff3 with regulatory and barrier stability functions, were increased. SDP also increased expression of Il-10 and Tgf-β, as well as markers of macrophages and dendritic cells eventually promoting an immune-tolerant environment. |
---|