Cargando…

Using Harmony Search Algorithm in Neural Networks to Improve Fraud Detection in Banking System

Financial fraud is among the main problems undermining the confidence of customers in addition to incurring economic losses to banks and financial institutions. In recent years, along with the proliferation of fraud, financial institutions began looking for ways to find a suitable solution in the fi...

Descripción completa

Detalles Bibliográficos
Autor principal: Daliri, Sajjad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031719/
https://www.ncbi.nlm.nih.gov/pubmed/32089669
http://dx.doi.org/10.1155/2020/6503459
Descripción
Sumario:Financial fraud is among the main problems undermining the confidence of customers in addition to incurring economic losses to banks and financial institutions. In recent years, along with the proliferation of fraud, financial institutions began looking for ways to find a suitable solution in the fight against fraud. Given the advanced and varied changes in methods of fraud, extensive research has been conducted to detect fraud. In this paper, the Artificial Neural Network technique and Harmony Search Algorithm are used to detect fraud. In the proposed method, hidden patterns between normal and fraudulent customers' information are searched. Given that fraudulent behavior could be detected and stopped before they take place, the results of the proposed system show that it has an acceptable capability in fraud detection.