Cargando…
Peroxisomal gene and protein expression increase in response to a high-lipid challenge in human skeletal muscle
Peroxisomes are essential for lipid metabolism and disruption of liver peroxisomal function results in neonatal death. Little is known about how peroxisomal content and activity respond to changes in the lipid environment in human skeletal muscle (HSkM). AIMS: We hypothesized and tested that increas...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031862/ https://www.ncbi.nlm.nih.gov/pubmed/31226353 http://dx.doi.org/10.1016/j.metabol.2019.06.009 |
_version_ | 1783499455811551232 |
---|---|
author | Huang, Tai-Yu Zheng, Donghai Hickner, Robert C. Brault, Jeffrey J. Cortright, Ronald N. |
author_facet | Huang, Tai-Yu Zheng, Donghai Hickner, Robert C. Brault, Jeffrey J. Cortright, Ronald N. |
author_sort | Huang, Tai-Yu |
collection | PubMed |
description | Peroxisomes are essential for lipid metabolism and disruption of liver peroxisomal function results in neonatal death. Little is known about how peroxisomal content and activity respond to changes in the lipid environment in human skeletal muscle (HSkM). AIMS: We hypothesized and tested that increased peroxisomal gene/protein expression and functionality occur in HSkM as an adaptive response to lipid oversupply. MATERIALS AND METHODS: HSkM biopsies, derived from a total of sixty-two subjects, were collected for 1) examining correlations between peroxisomal proteins and intramyocellular lipid content (IMLC) as well as between peroxisomal functionality and IMLC, 2) assessing peroxisomal gene expression in response to acute- or 7-day high fat meal (HFM), and in human tissue derived primary myotubes for 3) treating with high fatty acids to induce peroxisomal adaptions. IMLC were measured by both biochemical analyses and fluorescent staining. Peroxisomal membrane protein PMP70 and biogenesis gene (PEX) expression were assessed using western blotting and realtime qRT-PCR respectively. 1-(14)C radiolabeled lignocerate and palmitate oxidation assays were performed for peroxisomal and mitochondrial functionality respectively. RESULTS: 1) Under fasting conditions, HSkM tissue demonstrated a significant correlation (P ≪ 0.05) between IMCL and the peroxisomal biogenesis factor 19 (PEX19) protein as well as between lipid content and palmitate and lignocerate complete oxidation. 2)Similarly, post-HFM, additional PEX genes (Pex19, PEX11A, and PEX5) were significantly (P ≪ 0.05) upregulated. 3)Increments in PMP70, carnitine octanoyl transferase (CrOT), PGC-1α, and ERRα mRNA were observed post-fatty acid incubation in HSkM cells. PMP70 protein was significantly (P ≪ 0.05) elevated 48-h post lipid treatment. CONCLUSIONS: These results are the first to associate IMLC with peroxisomal gene/protein expression and function in HSkM suggesting an adaptive role for peroxisomes in lipid metabolism in this tissue. |
format | Online Article Text |
id | pubmed-7031862 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-70318622020-09-01 Peroxisomal gene and protein expression increase in response to a high-lipid challenge in human skeletal muscle Huang, Tai-Yu Zheng, Donghai Hickner, Robert C. Brault, Jeffrey J. Cortright, Ronald N. Metabolism Article Peroxisomes are essential for lipid metabolism and disruption of liver peroxisomal function results in neonatal death. Little is known about how peroxisomal content and activity respond to changes in the lipid environment in human skeletal muscle (HSkM). AIMS: We hypothesized and tested that increased peroxisomal gene/protein expression and functionality occur in HSkM as an adaptive response to lipid oversupply. MATERIALS AND METHODS: HSkM biopsies, derived from a total of sixty-two subjects, were collected for 1) examining correlations between peroxisomal proteins and intramyocellular lipid content (IMLC) as well as between peroxisomal functionality and IMLC, 2) assessing peroxisomal gene expression in response to acute- or 7-day high fat meal (HFM), and in human tissue derived primary myotubes for 3) treating with high fatty acids to induce peroxisomal adaptions. IMLC were measured by both biochemical analyses and fluorescent staining. Peroxisomal membrane protein PMP70 and biogenesis gene (PEX) expression were assessed using western blotting and realtime qRT-PCR respectively. 1-(14)C radiolabeled lignocerate and palmitate oxidation assays were performed for peroxisomal and mitochondrial functionality respectively. RESULTS: 1) Under fasting conditions, HSkM tissue demonstrated a significant correlation (P ≪ 0.05) between IMCL and the peroxisomal biogenesis factor 19 (PEX19) protein as well as between lipid content and palmitate and lignocerate complete oxidation. 2)Similarly, post-HFM, additional PEX genes (Pex19, PEX11A, and PEX5) were significantly (P ≪ 0.05) upregulated. 3)Increments in PMP70, carnitine octanoyl transferase (CrOT), PGC-1α, and ERRα mRNA were observed post-fatty acid incubation in HSkM cells. PMP70 protein was significantly (P ≪ 0.05) elevated 48-h post lipid treatment. CONCLUSIONS: These results are the first to associate IMLC with peroxisomal gene/protein expression and function in HSkM suggesting an adaptive role for peroxisomes in lipid metabolism in this tissue. 2019-06-19 2019-09 /pmc/articles/PMC7031862/ /pubmed/31226353 http://dx.doi.org/10.1016/j.metabol.2019.06.009 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Huang, Tai-Yu Zheng, Donghai Hickner, Robert C. Brault, Jeffrey J. Cortright, Ronald N. Peroxisomal gene and protein expression increase in response to a high-lipid challenge in human skeletal muscle |
title | Peroxisomal gene and protein expression increase in response to a high-lipid challenge in human skeletal muscle |
title_full | Peroxisomal gene and protein expression increase in response to a high-lipid challenge in human skeletal muscle |
title_fullStr | Peroxisomal gene and protein expression increase in response to a high-lipid challenge in human skeletal muscle |
title_full_unstemmed | Peroxisomal gene and protein expression increase in response to a high-lipid challenge in human skeletal muscle |
title_short | Peroxisomal gene and protein expression increase in response to a high-lipid challenge in human skeletal muscle |
title_sort | peroxisomal gene and protein expression increase in response to a high-lipid challenge in human skeletal muscle |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031862/ https://www.ncbi.nlm.nih.gov/pubmed/31226353 http://dx.doi.org/10.1016/j.metabol.2019.06.009 |
work_keys_str_mv | AT huangtaiyu peroxisomalgeneandproteinexpressionincreaseinresponsetoahighlipidchallengeinhumanskeletalmuscle AT zhengdonghai peroxisomalgeneandproteinexpressionincreaseinresponsetoahighlipidchallengeinhumanskeletalmuscle AT hicknerrobertc peroxisomalgeneandproteinexpressionincreaseinresponsetoahighlipidchallengeinhumanskeletalmuscle AT braultjeffreyj peroxisomalgeneandproteinexpressionincreaseinresponsetoahighlipidchallengeinhumanskeletalmuscle AT cortrightronaldn peroxisomalgeneandproteinexpressionincreaseinresponsetoahighlipidchallengeinhumanskeletalmuscle |