Cargando…
ROS-responsive drug delivery systems for biomedical applications
In the field of biomedicine, stimuli-responsive drug delivery systems (DDSs) have become increasingly popular due to their site-specific release ability in response to a certain physiological stimulus, which may result in both enhanced treatment outcome and reduced side effects. Reactive oxygen spec...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shenyang Pharmaceutical University
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7032079/ https://www.ncbi.nlm.nih.gov/pubmed/32104383 http://dx.doi.org/10.1016/j.ajps.2017.11.002 |
Sumario: | In the field of biomedicine, stimuli-responsive drug delivery systems (DDSs) have become increasingly popular due to their site-specific release ability in response to a certain physiological stimulus, which may result in both enhanced treatment outcome and reduced side effects. Reactive oxygen species (ROS) are the unavoidable consequence of cell oxidative metabolism. ROS play a crucial part in regulating biological and physiological processes, whereas excessive intracellular ROS usually lead to the oxidation stress which has implications in several typical diseases such as cancer, inflammation and atherosclerosis. Therefore, ROS-responsive DDSs have elicited widespread popularity for their promising applications in a series of biomedical research because the payload is only released in targeted cells or tissues that overproduce ROS. According to the design of ROS-responsive DDSs, the main release mechanisms of therapeutic agents can be ascribed to ROS-induced carrier solubility change, ROS-induced carrier cleavage or ROS-induced prodrug linker cleavage. This review summarized the latest development and novel design of ROS-responsive DDSs and discussed their design concepts and the applications in the biomedical field. |
---|