Cargando…

Small GTPases: Structure, biological function and its interaction with nanoparticles

Small GTPase is a kind of GTP-binding protein commonly found in eukaryotic cells. It plays an important role in cytoskeletal reorganization, cell polarity, cell cycle progression, gene expression and many other significant events in cells, such as the interaction with foreign particles. Therefore, i...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Siyang, Cong, Wenshu, Zhou, Shurong, Shi, Yujie, Dai, Wenbing, Zhang, Hua, Wang, Xueqing, He, Bing, Zhang, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shenyang Pharmaceutical University 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7032109/
https://www.ncbi.nlm.nih.gov/pubmed/32104436
http://dx.doi.org/10.1016/j.ajps.2018.06.004
Descripción
Sumario:Small GTPase is a kind of GTP-binding protein commonly found in eukaryotic cells. It plays an important role in cytoskeletal reorganization, cell polarity, cell cycle progression, gene expression and many other significant events in cells, such as the interaction with foreign particles. Therefore, it is of great scientific significance to understand the biological properties of small GTPases as well as the GTPase-nano interplay, since more and more nanomedicine are supposed to be used in biomedical field. However, there is no review in this aspect. This review summarizes the small GTPases in terms of the structure, biological function and its interaction with nanoparticles. We briefly introduced the various nanoparticles such as gold/silver nanoparticles, SWCNT, polymeric micelles and other nano delivery systems that interacted with different GTPases. These current nanoparticles exhibited different pharmacological effect modes and various target design concepts in the small GTPases study. This will help to elucidate the conclusion that the therapeutic strategy targeting small GTPases might be a new research direction. It is believed that the in-depth study on the functional mechanism of GTPases can provide insights for the design and study of nanomedicines.