Cargando…
Effect of high-pressure homogenization on stability of emulsions containing zein and pectin
The aim of this study was to investigate the effect of high-pressure homogenization on the droplet size and physical stability of different formulations of pectin–zein stabilized rice bran oil emulsions. The obtained emulsions, both before and after passing through high-pressure homogenizer, were su...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shenyang Pharmaceutical University
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7032127/ https://www.ncbi.nlm.nih.gov/pubmed/32104310 http://dx.doi.org/10.1016/j.ajps.2016.09.004 |
Sumario: | The aim of this study was to investigate the effect of high-pressure homogenization on the droplet size and physical stability of different formulations of pectin–zein stabilized rice bran oil emulsions. The obtained emulsions, both before and after passing through high-pressure homogenizer, were subjected to stability test under environmental stress conditions, that is, temperature cycling at 4 °C/40 °C for 6 cycles and centrifugal test at 3000 rpm for 10 min. Applying high-pressure homogenization after mechanical homogenization caused only a small additional decrease in emulsion droplet size. The droplet size of emulsions was influenced by the type of pectin used; emulsions using high methoxy pectin (HMP) were smaller than that using low methoxy pectin (LMP). This is due to a greater emulsifying property of HMP than LMP. The emulsions stabilized by HMP–zein showed good physical stability with lower percent creaming index than those using LMP, both before and after passing through high-pressure homogenizer. The stability of emulsions after passing through high-pressure homogenizer was slightly higher when using higher zein concentration, resulting from stronger pectin–zein complexes that could rearrange and adsorb onto the emulsion droplets. |
---|