Cargando…

Buccal administration of mucoadhesive blend films saturated with propranolol loaded nanoparticles

The aims of this study were to prepare and characterize hydroxypropyl methylcellulose (HPMC)/polycarbophil (PC) mucoadhesive blend films saturated with propranolol hydrochloride (PNL)-loaded nanoparticles to improve permeability of drugs that undergo first-pass metabolism. An ionic cross-linking met...

Descripción completa

Detalles Bibliográficos
Autores principales: Kraisit, Pakorn, Limmatvapirat, Sontaya, Luangtana-Anan, Manee, Sriamornsak, Pornsak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shenyang Pharmaceutical University 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7032168/
https://www.ncbi.nlm.nih.gov/pubmed/32104376
http://dx.doi.org/10.1016/j.ajps.2017.07.006
Descripción
Sumario:The aims of this study were to prepare and characterize hydroxypropyl methylcellulose (HPMC)/polycarbophil (PC) mucoadhesive blend films saturated with propranolol hydrochloride (PNL)-loaded nanoparticles to improve permeability of drugs that undergo first-pass metabolism. An ionic cross-linking method and film casting technique was used to prepare nanoparticles and mucoadhesive blend films, respectively. Increasing concentrations of PNL (70, 80, 90 mg/film) in HPMC/PC blend films containing PNL-loaded nanoparticles (PN-films) and HPMC/PC blend films containing PNL (80 mg/film) without nanoparticles (PP-films) were prepared to test swelling, mucoadhesiveness, release, permeation and physicochemical properties. Scanning electron microscope (SEM) images showed a partially smooth surface with a wrinkled occurrence and spherically shaped, well-dispersed nanoparticles on the surface of PN-films containing PNL 80 mg/film (PN-films-80). The size of the nanoparticles on the surface of PN-films-80 was around 100 nm, which was similar to the nanoparticle size observed using light scattering technique. The swelling index (SI) of all PN-films and PP-films increased greatly in the first period time (10–20 min) and reached swelling equilibrium at 20 min and 30 min, respectively. For the PN-films, the concentration of PNL influenced the mucoadhesive properties and tended to be higher when the amount of PNL increased. Immediate release of all blend film formulations was found in early time points (10–30 min). After 120 min, the release of PN-films-70 was lower than the other PN-films. Permeation studies using porcine buccal mucosa showed that inclusion of nanoparticles in the films increased the permeability of PNL compared to PP-films. Therefore, buccal administration of mucoadhesive blend films containing PNL-loaded nanoparticles could be a promising approach for drugs that undergo first-pass metabolism.