Cargando…

Influence of solvent mixtures on HPMCAS-celecoxib microparticles prepared by electrospraying

Hypromellose acetate succinate (HPMCAS) microparticles containing the poorly-water soluble drug celecoxib (CEL) were prepared by electrospraying intended for oral drug delivery. Various solvent mixtures with different solubility for CEL and HPMCAS were used to induce changes in the polymer structura...

Descripción completa

Detalles Bibliográficos
Autores principales: Bohr, Adam, Wang, Yingya, Beck-Broichsitter, Moritz, Yang, Mingshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shenyang Pharmaceutical University 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7032181/
https://www.ncbi.nlm.nih.gov/pubmed/32104432
http://dx.doi.org/10.1016/j.ajps.2018.01.007
_version_ 1783499521341259776
author Bohr, Adam
Wang, Yingya
Beck-Broichsitter, Moritz
Yang, Mingshi
author_facet Bohr, Adam
Wang, Yingya
Beck-Broichsitter, Moritz
Yang, Mingshi
author_sort Bohr, Adam
collection PubMed
description Hypromellose acetate succinate (HPMCAS) microparticles containing the poorly-water soluble drug celecoxib (CEL) were prepared by electrospraying intended for oral drug delivery. Various solvent mixtures with different solubility for CEL and HPMCAS were used to induce changes in the polymer structural conformation of the microparticles. The performance of the prepared microparticles was evaluated by studying the solid state from, particle size and morphology, radial drug distribution and drug release. CEL was amorphous in all electrosprayed HPMCAS microparticles. The particle size and morphology was dependent on the solubility of HPMCAS in the solvent mixture used with poorer solvents resulting in smaller microparticles with rougher appearance. The CEL distribution on the particles surface was relatively homogeneous and similar for all microparticles. Drug release from the microparticles was observed at a higher rate depending on the solubility of HPMCAS in the solvent used for electrospraying, and in all cases an at least 4-fold higher rate was observed compared with the crystalline drug. Drug precipitation from the supersaturated solution was inhibited by HPMCAS for all microparticles based on its parachute effect while crystalline CEL did not reach supersaturation. This study demonstrated that electrospraying can be used to produce microparticles with tailored properties for pharmaceutical application by adjusting solvent selection.
format Online
Article
Text
id pubmed-7032181
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Shenyang Pharmaceutical University
record_format MEDLINE/PubMed
spelling pubmed-70321812020-02-26 Influence of solvent mixtures on HPMCAS-celecoxib microparticles prepared by electrospraying Bohr, Adam Wang, Yingya Beck-Broichsitter, Moritz Yang, Mingshi Asian J Pharm Sci Research Paper Hypromellose acetate succinate (HPMCAS) microparticles containing the poorly-water soluble drug celecoxib (CEL) were prepared by electrospraying intended for oral drug delivery. Various solvent mixtures with different solubility for CEL and HPMCAS were used to induce changes in the polymer structural conformation of the microparticles. The performance of the prepared microparticles was evaluated by studying the solid state from, particle size and morphology, radial drug distribution and drug release. CEL was amorphous in all electrosprayed HPMCAS microparticles. The particle size and morphology was dependent on the solubility of HPMCAS in the solvent mixture used with poorer solvents resulting in smaller microparticles with rougher appearance. The CEL distribution on the particles surface was relatively homogeneous and similar for all microparticles. Drug release from the microparticles was observed at a higher rate depending on the solubility of HPMCAS in the solvent used for electrospraying, and in all cases an at least 4-fold higher rate was observed compared with the crystalline drug. Drug precipitation from the supersaturated solution was inhibited by HPMCAS for all microparticles based on its parachute effect while crystalline CEL did not reach supersaturation. This study demonstrated that electrospraying can be used to produce microparticles with tailored properties for pharmaceutical application by adjusting solvent selection. Shenyang Pharmaceutical University 2018-11 2018-03-12 /pmc/articles/PMC7032181/ /pubmed/32104432 http://dx.doi.org/10.1016/j.ajps.2018.01.007 Text en © 2018 Shenyang Pharmaceutical University. Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Bohr, Adam
Wang, Yingya
Beck-Broichsitter, Moritz
Yang, Mingshi
Influence of solvent mixtures on HPMCAS-celecoxib microparticles prepared by electrospraying
title Influence of solvent mixtures on HPMCAS-celecoxib microparticles prepared by electrospraying
title_full Influence of solvent mixtures on HPMCAS-celecoxib microparticles prepared by electrospraying
title_fullStr Influence of solvent mixtures on HPMCAS-celecoxib microparticles prepared by electrospraying
title_full_unstemmed Influence of solvent mixtures on HPMCAS-celecoxib microparticles prepared by electrospraying
title_short Influence of solvent mixtures on HPMCAS-celecoxib microparticles prepared by electrospraying
title_sort influence of solvent mixtures on hpmcas-celecoxib microparticles prepared by electrospraying
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7032181/
https://www.ncbi.nlm.nih.gov/pubmed/32104432
http://dx.doi.org/10.1016/j.ajps.2018.01.007
work_keys_str_mv AT bohradam influenceofsolventmixturesonhpmcascelecoxibmicroparticlespreparedbyelectrospraying
AT wangyingya influenceofsolventmixturesonhpmcascelecoxibmicroparticlespreparedbyelectrospraying
AT beckbroichsittermoritz influenceofsolventmixturesonhpmcascelecoxibmicroparticlespreparedbyelectrospraying
AT yangmingshi influenceofsolventmixturesonhpmcascelecoxibmicroparticlespreparedbyelectrospraying