Cargando…
Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses
During the last two decades, human has increased his knowledge about the role of miRNAs and their target genes in plant stress response. Biotic and abiotic stresses result in simultaneous tissue-specific up/down-regulation of several miRNAs. In this study, for the first time, feature selection algor...
Autor principal: | Asefpour Vakilian, Keyvan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033123/ https://www.ncbi.nlm.nih.gov/pubmed/32080299 http://dx.doi.org/10.1038/s41598-020-59981-6 |
Ejemplares similares
-
Machine learning provides specific detection of salt and drought stresses in cucumber based on miRNA characteristics
por: Mohammadi, Parvin, et al.
Publicado: (2023) -
Effects of power ultrasound treatment on the shelf life of button mushrooms: Digital image processing and microbial counting can reveal the effects
por: Ganjdoost, Maryam, et al.
Publicado: (2021) -
ASRmiRNA: Abiotic Stress-Responsive miRNA Prediction in Plants by Using Machine Learning Algorithms with Pseudo K-Tuple Nucleotide Compositional Features
por: Meher, Prabina Kumar, et al.
Publicado: (2022) -
An object-based sparse representation model for spatiotemporal image fusion
por: Asefpour Vakilian, Afshin, et al.
Publicado: (2022) -
Employing machine learning for reliable miRNA target identification in plants
por: Jha, Ashwani, et al.
Publicado: (2011)