Cargando…
Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer
OBJECTIVES: To create a radiomics approach based on multiparametric magnetic resonance imaging (mpMRI) features extracted from an auto-fixed volume of interest (VOI) that quantifies the phenotype of clinically significant (CS) peripheral zone (PZ) prostate cancer (PCa). METHODS: This study included...
Autores principales: | Bleker, Jeroen, Kwee, Thomas C., Dierckx, Rudi A. J. O., de Jong, Igle Jan, Huisman, Henkjan, Yakar, Derya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033141/ https://www.ncbi.nlm.nih.gov/pubmed/31776744 http://dx.doi.org/10.1007/s00330-019-06488-y |
Ejemplares similares
-
Single-center versus multi-center biparametric MRI radiomics approach for clinically significant peripheral zone prostate cancer
por: Bleker, Jeroen, et al.
Publicado: (2021) -
Liver fibrosis staging by deep learning: a visual-based explanation of diagnostic decisions of the model
por: Yin, Yunchao, et al.
Publicado: (2021) -
A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics
por: Bleker, Jeroen, et al.
Publicado: (2022) -
AI-assisted biparametric MRI surveillance of prostate cancer: feasibility study
por: Roest, C., et al.
Publicado: (2022) -
Deep learning–assisted prostate cancer detection on bi-parametric MRI: minimum training data size requirements and effect of prior knowledge
por: Hosseinzadeh, Matin, et al.
Publicado: (2021)