Cargando…

Upregulation of miR-101a Suppresses Chronic Renal Fibrosis by Regulating KDM3A via Blockade of the YAP-TGF-β-Smad Signaling Pathway

Renal fibrosis denotes a common complication of diabetic nephropathy and is a predominant cause of end-stage renal disease. Despite the association between microRNAs (miRNAs or miRs) and renal fibrosis, miRNAs have been reported to play a vital role in the development of chronic renal fibrosis. Ther...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Hong, Xu, Yanyan, Jiang, Nan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033461/
https://www.ncbi.nlm.nih.gov/pubmed/32092824
http://dx.doi.org/10.1016/j.omtn.2020.01.002
_version_ 1783499672642387968
author Ding, Hong
Xu, Yanyan
Jiang, Nan
author_facet Ding, Hong
Xu, Yanyan
Jiang, Nan
author_sort Ding, Hong
collection PubMed
description Renal fibrosis denotes a common complication of diabetic nephropathy and is a predominant cause of end-stage renal disease. Despite the association between microRNAs (miRNAs or miRs) and renal fibrosis, miRNAs have been reported to play a vital role in the development of chronic renal fibrosis. Therefore, the aim of the present study was to investigate the possible function of miR-101a in chronic renal fibrosis. Initially, microarray-based gene expression profiling of renal fibrosis was employed to screen the differentially expressed genes. An in vivo mouse model of chronic renal fibrosis induced by a unilateral ureteral obstruction (UUO) and an in vitro cell model induced by aristolochic acid (AA) were constructed. miR-101a expression was examined using a fluorescence in situ hybridization (FISH) assay and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Then, the interaction between miR-101a and KDM3A was identified using an online website combined with a dual-luciferase reporter assay. Finally, gain- and loss-of-function experiments were conducted to elucidate the effect of miR-101a on the expression of Col1a1, fibronectin, α-smooth muscle actin (α-SMA), and YAP-TGF-β (transforming growth factor β)-Smad signaling pathway-related genes, as well as the degree of renal fibrosis. miR-101a was poorly expressed while KDM3A was robustly induced in chronic renal fibrosis tissues and cells. In addition, miR-101a could target and downregulate KDM3A expression, which led to elevated TGIF1, inhibited expression of Collagen I (Col1a1), fibronectin, α-SMA, YAP1, and TGF-β2 along with the extent of Smad2/3 phosphorylation, as well as delayed renal fibrosis degree. Besides, overexpressed YAP/TGF-β2 or inhibited TGIF1 partially restored the inhibitory effect of miR-101a on chronic renal fibrosis. Taken together, miR-101a could potentially slow down chronic renal fibrosis by the inactivation of the YAP-TGF-β-Smad signaling pathway via KDM3A, highlighting the potential of miR-101a as a therapeutic target for chronic renal fibrosis treatment.
format Online
Article
Text
id pubmed-7033461
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society of Gene & Cell Therapy
record_format MEDLINE/PubMed
spelling pubmed-70334612020-02-25 Upregulation of miR-101a Suppresses Chronic Renal Fibrosis by Regulating KDM3A via Blockade of the YAP-TGF-β-Smad Signaling Pathway Ding, Hong Xu, Yanyan Jiang, Nan Mol Ther Nucleic Acids Article Renal fibrosis denotes a common complication of diabetic nephropathy and is a predominant cause of end-stage renal disease. Despite the association between microRNAs (miRNAs or miRs) and renal fibrosis, miRNAs have been reported to play a vital role in the development of chronic renal fibrosis. Therefore, the aim of the present study was to investigate the possible function of miR-101a in chronic renal fibrosis. Initially, microarray-based gene expression profiling of renal fibrosis was employed to screen the differentially expressed genes. An in vivo mouse model of chronic renal fibrosis induced by a unilateral ureteral obstruction (UUO) and an in vitro cell model induced by aristolochic acid (AA) were constructed. miR-101a expression was examined using a fluorescence in situ hybridization (FISH) assay and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Then, the interaction between miR-101a and KDM3A was identified using an online website combined with a dual-luciferase reporter assay. Finally, gain- and loss-of-function experiments were conducted to elucidate the effect of miR-101a on the expression of Col1a1, fibronectin, α-smooth muscle actin (α-SMA), and YAP-TGF-β (transforming growth factor β)-Smad signaling pathway-related genes, as well as the degree of renal fibrosis. miR-101a was poorly expressed while KDM3A was robustly induced in chronic renal fibrosis tissues and cells. In addition, miR-101a could target and downregulate KDM3A expression, which led to elevated TGIF1, inhibited expression of Collagen I (Col1a1), fibronectin, α-SMA, YAP1, and TGF-β2 along with the extent of Smad2/3 phosphorylation, as well as delayed renal fibrosis degree. Besides, overexpressed YAP/TGF-β2 or inhibited TGIF1 partially restored the inhibitory effect of miR-101a on chronic renal fibrosis. Taken together, miR-101a could potentially slow down chronic renal fibrosis by the inactivation of the YAP-TGF-β-Smad signaling pathway via KDM3A, highlighting the potential of miR-101a as a therapeutic target for chronic renal fibrosis treatment. American Society of Gene & Cell Therapy 2020-01-16 /pmc/articles/PMC7033461/ /pubmed/32092824 http://dx.doi.org/10.1016/j.omtn.2020.01.002 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ding, Hong
Xu, Yanyan
Jiang, Nan
Upregulation of miR-101a Suppresses Chronic Renal Fibrosis by Regulating KDM3A via Blockade of the YAP-TGF-β-Smad Signaling Pathway
title Upregulation of miR-101a Suppresses Chronic Renal Fibrosis by Regulating KDM3A via Blockade of the YAP-TGF-β-Smad Signaling Pathway
title_full Upregulation of miR-101a Suppresses Chronic Renal Fibrosis by Regulating KDM3A via Blockade of the YAP-TGF-β-Smad Signaling Pathway
title_fullStr Upregulation of miR-101a Suppresses Chronic Renal Fibrosis by Regulating KDM3A via Blockade of the YAP-TGF-β-Smad Signaling Pathway
title_full_unstemmed Upregulation of miR-101a Suppresses Chronic Renal Fibrosis by Regulating KDM3A via Blockade of the YAP-TGF-β-Smad Signaling Pathway
title_short Upregulation of miR-101a Suppresses Chronic Renal Fibrosis by Regulating KDM3A via Blockade of the YAP-TGF-β-Smad Signaling Pathway
title_sort upregulation of mir-101a suppresses chronic renal fibrosis by regulating kdm3a via blockade of the yap-tgf-β-smad signaling pathway
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033461/
https://www.ncbi.nlm.nih.gov/pubmed/32092824
http://dx.doi.org/10.1016/j.omtn.2020.01.002
work_keys_str_mv AT dinghong upregulationofmir101asuppresseschronicrenalfibrosisbyregulatingkdm3aviablockadeoftheyaptgfbsmadsignalingpathway
AT xuyanyan upregulationofmir101asuppresseschronicrenalfibrosisbyregulatingkdm3aviablockadeoftheyaptgfbsmadsignalingpathway
AT jiangnan upregulationofmir101asuppresseschronicrenalfibrosisbyregulatingkdm3aviablockadeoftheyaptgfbsmadsignalingpathway