Cargando…
Data on the drug release profiles and powder characteristics of the ethyl cellulose based microparticles prepared by the ultra-fine particle processing system
Ethyl cellulose (EC) based microparticles (MPs) could provide sustained release for Huperzine A. The drug release mechanism of MPs was exploited to achieve an ideal drug release profile. We previously found that the wettability of MPs greatly contributed to facilitating drug release, which was detai...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033531/ https://www.ncbi.nlm.nih.gov/pubmed/32095496 http://dx.doi.org/10.1016/j.dib.2020.105269 |
Sumario: | Ethyl cellulose (EC) based microparticles (MPs) could provide sustained release for Huperzine A. The drug release mechanism of MPs was exploited to achieve an ideal drug release profile. We previously found that the wettability of MPs greatly contributed to facilitating drug release, which was detailed in a research article entitled “Huperzine A loaded multiparticulate disintegrating tablet: Drug release mechanism of ethyl cellulose microparticles and pharmacokinetic study” (Peng et al., 2019) [1]. In this article, the influence of different polymers and drugs on the drug release behavior was investigated to broaden or compensate this finding. Besides, powder characterization of MPs was used to evaluate the further application of MPs for tablets. |
---|