Cargando…
Exfoliated Graphite Nanoplatelet-Carbon Nanotube Hybrid Composites for Compression Sensing
[Image: see text] In this study, we investigated the gauge factor and compressive modulus of hybrid nanocomposites of exfoliated graphite nanoplatelets (xGnP) and multiwalled carbon nanotubes (MWCNTs) in a polydimethylsiloxane matrix under compressive strain. Mechanical and electrical tests were con...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033660/ https://www.ncbi.nlm.nih.gov/pubmed/32095686 http://dx.doi.org/10.1021/acsomega.9b03012 |
Sumario: | [Image: see text] In this study, we investigated the gauge factor and compressive modulus of hybrid nanocomposites of exfoliated graphite nanoplatelets (xGnP) and multiwalled carbon nanotubes (MWCNTs) in a polydimethylsiloxane matrix under compressive strain. Mechanical and electrical tests were conducted to investigate the effects of nanofiller wt %, the xGnP size, and xGnP:MWCNT ratio on the compressive modulus and sensitivity of the sensors. It was found that nanofiller wt %, the xGnP size, and xGnP:MWCNT ratio significantly affect the electromechanical properties of the sensor. The compressive modulus increased with an increase in the nanofiller wt % and a decrease in the xGnP size and xGnP:MWCNT ratio. However, the gauge factor decreases with a decrease in the nanofiller wt % and xGnP size and an increase in the xGnP:MWCNT ratio. Therefore, by investigating the piezoresistive effects of various factors for sensing performance, such as wt %, xGnP size, and xGnP:MWCNT ratio, the concept of one- and two-dimensional hybrid fillers provides an effective way to tune both mechanical properties and sensitivity of nanocomposites by tailoring the network structure of fillers. |
---|