Cargando…

Genome-wide annotation, comparison and functional genomics of carbohydrate-active enzymes in legumes infecting Fusarium oxysporum formae speciales

Fusarium wilt caused by soil borne ascomycetes fungi Fusarium oxysporum which has host-specific forms known as formae speciales (ff. spp.), apparently requires plant cell wall degrading enzymes (PCWDE) for successful invasion. In this study, 12 F. oxysporum ff. spp. were taken for genome-wide annota...

Descripción completa

Detalles Bibliográficos
Autores principales: Roy, Abhijeet, Jayaprakash, Aiswarya, Rajeswary T, Raja, Annamalai, A., Lakshmi, PTV
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033727/
https://www.ncbi.nlm.nih.gov/pubmed/32128282
http://dx.doi.org/10.1080/21501203.2019.1706656
Descripción
Sumario:Fusarium wilt caused by soil borne ascomycetes fungi Fusarium oxysporum which has host-specific forms known as formae speciales (ff. spp.), apparently requires plant cell wall degrading enzymes (PCWDE) for successful invasion. In this study, 12 F. oxysporum ff. spp. were taken for genome-wide annotation and comparative analysis of CAZymes, with an assessment of secretory PCWDE and orthologues identification in the three legumes infecting ff. spp.  Further, transcriptomic analysis in two legumes infecting ff. spp. using publically available data was also done. The comparative studies showed Glycoside hydrolase (GH) families to be abundant and Principle Component Analysis (PCA) formed two distinct clusters of ff. spp. based on the CAZymes modules and families. Nearly half of the CAZymes in the legumes infecting ff. spp. coded for signal peptides. The orthologue clusters of secretory CAZymes common in all the three legume infecting ff. spp. mostly belonged to families of AA9, GH28, CE5 and PL1 and the expression analysis revealed the abundant PCWDE were differentially expressed in these legumes infecting ff. spp.  Therefore, this study gave an insight into the distribution of CAZymes especially extracellular PCWDE in legumes infecting ff. spp. with further shedding light onto some of the key PCWDE families through differential expression analysis.