Cargando…
The Impact of Test and Sample Characteristics on Model Selection and Classification Accuracy in the Multilevel Mixture IRT Model
The standard item response theory (IRT) model assumption of a single homogenous population may be violated in real data. Mixture extensions of IRT models have been proposed to account for latent heterogeneous populations, but these models are not designed to handle multilevel data structures. Ignori...
Autores principales: | Sen, Sedat, Cohen, Allan S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033749/ https://www.ncbi.nlm.nih.gov/pubmed/32116973 http://dx.doi.org/10.3389/fpsyg.2020.00197 |
Ejemplares similares
-
Sample Size Requirements for Applying Diagnostic Classification Models
por: Sen, Sedat, et al.
Publicado: (2021) -
A Multilevel Mixture IRT Framework for Modeling Response Times as Predictors or Indicators of Response Engagement in IRT Models
por: Nagy, Gabriel, et al.
Publicado: (2021) -
Analysis of Process Data of PISA 2012 Computer-Based Problem Solving: Application of the Modified Multilevel Mixture IRT Model
por: Liu, Hongyun, et al.
Publicado: (2018) -
Analyzing the Fit of IRT Models With the Hausman Test
por: Ranger, Jochen, et al.
Publicado: (2020) -
A Mixture IRT Analysis of Risky Youth Behavior
por: Finch, W. Holmes, et al.
Publicado: (2011)