Cargando…
Comprehensive assessment of computational algorithms in predicting cancer driver mutations
BACKGROUND: The initiation and subsequent evolution of cancer are largely driven by a relatively small number of somatic mutations with critical functional impacts, so-called driver mutations. Identifying driver mutations in a patient’s tumor cells is a central task in the era of precision cancer me...
Autores principales: | Chen, Hu, Li, Jun, Wang, Yumeng, Ng, Patrick Kwok-Shing, Tsang, Yiu Huen, Shaw, Kenna R., Mills, Gordon B., Liang, Han |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033911/ https://www.ncbi.nlm.nih.gov/pubmed/32079540 http://dx.doi.org/10.1186/s13059-020-01954-z |
Ejemplares similares
-
Cancer driver mutation prediction through Bayesian integration of multi-omic data
por: Wang, Zixing, et al.
Publicado: (2018) -
Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer
por: Wang, Yumeng, et al.
Publicado: (2018) -
Comprehensive Characterization of Cancer Driver Genes and
Mutations
por: Bailey, Matthew H., et al.
Publicado: (2018) -
Irreversible HER2 inhibitors overcome resistance to the RSL3 ferroptosis inducer in non-HER2 amplified luminal breast cancer
por: Park, Soon Young, et al.
Publicado: (2023) -
Differential expression of MAGEA6 toggles autophagy to promote pancreatic cancer progression
por: Tsang, Yiu Huen, et al.
Publicado: (2020)