Cargando…
Group Guided Fused Laplacian Sparse Group Lasso for Modeling Alzheimer's Disease Progression
As the largest cause of dementia, Alzheimer's disease (AD) has brought serious burdens to patients and their families, mostly in the financial, psychological, and emotional aspects. In order to assess the progression of AD and develop new treatment methods for the disease, it is essential to in...
Autores principales: | Liu, Xiaoli, Wang, Jianzhong, Ren, Fulong, Kong, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033952/ https://www.ncbi.nlm.nih.gov/pubmed/32104201 http://dx.doi.org/10.1155/2020/4036560 |
Ejemplares similares
-
Simultaneous Channel and Feature Selection of Fused EEG Features Based on Sparse Group Lasso
por: Wang, Jin-Jia, et al.
Publicado: (2015) -
Sparse Damage Detection with Complex Group Lasso and Adaptive Complex Group Lasso
por: Dimopoulos, Vasileios, et al.
Publicado: (2022) -
Groupyr: Sparse Group Lasso in Python
por: Richie-Halford, Adam, et al.
Publicado: (2021) -
Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent
por: Klosa, Jan, et al.
Publicado: (2020) -
Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD
por: Ogutu, Joseph O, et al.
Publicado: (2014)