Cargando…

Isothermal Kinetics of Poly(butylene adipate-co-butylene itaconate) Copolyesters with Ethylenediaminetetraacetic Acid

[Image: see text] A series of aliphatic copolyesters, poly(butylene adipate-co-butylene itaconate) (PBABI), have been synthesized using melt polycondensation of adipic acid (AA), itaconic acid (IA), 1,4-butanediol (1,4-BDO), and the tetra-functional group of ethylenediaminetetraacetic acid (EDTA, 0....

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chin-Wen, Hsu, Te-Sheng, Rwei, Syang-Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033981/
https://www.ncbi.nlm.nih.gov/pubmed/32095731
http://dx.doi.org/10.1021/acsomega.9b04315
Descripción
Sumario:[Image: see text] A series of aliphatic copolyesters, poly(butylene adipate-co-butylene itaconate) (PBABI), have been synthesized using melt polycondensation of adipic acid (AA), itaconic acid (IA), 1,4-butanediol (1,4-BDO), and the tetra-functional group of ethylenediaminetetraacetic acid (EDTA, 0.1 mol %) to form partially cross-linking density as novel thermoplastic unsaturated copolyesters in our previous research. The crystal phase of PBABI copolyesters tended to prefer thermodynamics in the presence of a small amount of EDTA. The isothermal crystallization analysis revealed that the PBABI with EDTA exhibited a higher crystallization rate and a shorter half-time of crystallization than neat PBABI copolyesters. All of the sizes of spherulite/sheet crystals in the BA/BI = 9/1 are smaller than at BA/BI = 10/0 with or without a cross-linking agent, which demonstrated that the morphology behavior tended to form a small sheet crystal in the presence of 10 mol % IA, which played a dominant role in determining the average size of the crystal. These results deepen our understanding of the relationship among the cross-linking agent, the crystal form, and solidification time in PBABI copolyesters, making these kinds of polymers applicable to reinforce three-dimensional (3D) air-permeable polyester-based smart textiles.