Cargando…
Willow Catkins-Derived Porous Carbon Membrane with Hydrophilic Property for Efficient Solar Steam Generation
[Image: see text] Biomass wastes are abundant and common in our daily life, and they are cost-effective, promising, and renewable. Herein, collected willow catkins were used to prepare a hydrophilic biochar composite membrane, which was placed in a tree-like evaporation configuration to simulate a n...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034019/ https://www.ncbi.nlm.nih.gov/pubmed/32095709 http://dx.doi.org/10.1021/acsomega.9b03718 |
_version_ | 1783499793597726720 |
---|---|
author | Zhang, Shaochun Zang, Linlin Dou, Tianwei Zou, Jinlong Zhang, Yanhong Sun, Liguo |
author_facet | Zhang, Shaochun Zang, Linlin Dou, Tianwei Zou, Jinlong Zhang, Yanhong Sun, Liguo |
author_sort | Zhang, Shaochun |
collection | PubMed |
description | [Image: see text] Biomass wastes are abundant and common in our daily life, and they are cost-effective, promising, and renewable. Herein, collected willow catkins were used to prepare a hydrophilic biochar composite membrane, which was placed in a tree-like evaporation configuration to simulate a natural transpiration process. The strong light absorption (∼96%) of the biochar layer could harvest light and convert it into thermal energy, which then is used to heat the surrounding water pumped by a porous water channel via capillary action. A hydrophilic light-absorber layer remarkably increased the attachment sites of water molecules, thereby maximizing the use of thermal energy. At the same time, hierarchically porous structure and large specific surface area (∼1380 m(2) g(–1)) supplied more available channels for rapid water vapor diffusion. The as-prepared composite membrane with a low-cost advantage realized a high evaporation rate (1.65 kg m(–2) h(–1)) only under 1 sun illumination (1 kW m(–2)), which was improved by roughly 27% in comparison with the unmodified hydrophobic composite membrane. The tree-like evaporation configuration with excellent heat localization resulted in the evaporator achieving a high solar-to-vapor conversion efficiency of ∼90.5%. Besides, the composite membrane could remove 99.9% sodium ions from actual seawater and 99.5% heavy metal ions from simulated wastewater, and the long-term stable evaporation performance proved its potential in actual solar desalination. This work not only fabricated an efficient evaporator but also provided a strategy for reusing various natural wastes for water purification. |
format | Online Article Text |
id | pubmed-7034019 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-70340192020-02-24 Willow Catkins-Derived Porous Carbon Membrane with Hydrophilic Property for Efficient Solar Steam Generation Zhang, Shaochun Zang, Linlin Dou, Tianwei Zou, Jinlong Zhang, Yanhong Sun, Liguo ACS Omega [Image: see text] Biomass wastes are abundant and common in our daily life, and they are cost-effective, promising, and renewable. Herein, collected willow catkins were used to prepare a hydrophilic biochar composite membrane, which was placed in a tree-like evaporation configuration to simulate a natural transpiration process. The strong light absorption (∼96%) of the biochar layer could harvest light and convert it into thermal energy, which then is used to heat the surrounding water pumped by a porous water channel via capillary action. A hydrophilic light-absorber layer remarkably increased the attachment sites of water molecules, thereby maximizing the use of thermal energy. At the same time, hierarchically porous structure and large specific surface area (∼1380 m(2) g(–1)) supplied more available channels for rapid water vapor diffusion. The as-prepared composite membrane with a low-cost advantage realized a high evaporation rate (1.65 kg m(–2) h(–1)) only under 1 sun illumination (1 kW m(–2)), which was improved by roughly 27% in comparison with the unmodified hydrophobic composite membrane. The tree-like evaporation configuration with excellent heat localization resulted in the evaporator achieving a high solar-to-vapor conversion efficiency of ∼90.5%. Besides, the composite membrane could remove 99.9% sodium ions from actual seawater and 99.5% heavy metal ions from simulated wastewater, and the long-term stable evaporation performance proved its potential in actual solar desalination. This work not only fabricated an efficient evaporator but also provided a strategy for reusing various natural wastes for water purification. American Chemical Society 2020-02-05 /pmc/articles/PMC7034019/ /pubmed/32095709 http://dx.doi.org/10.1021/acsomega.9b03718 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Zhang, Shaochun Zang, Linlin Dou, Tianwei Zou, Jinlong Zhang, Yanhong Sun, Liguo Willow Catkins-Derived Porous Carbon Membrane with Hydrophilic Property for Efficient Solar Steam Generation |
title | Willow Catkins-Derived Porous Carbon Membrane with
Hydrophilic Property for Efficient Solar Steam Generation |
title_full | Willow Catkins-Derived Porous Carbon Membrane with
Hydrophilic Property for Efficient Solar Steam Generation |
title_fullStr | Willow Catkins-Derived Porous Carbon Membrane with
Hydrophilic Property for Efficient Solar Steam Generation |
title_full_unstemmed | Willow Catkins-Derived Porous Carbon Membrane with
Hydrophilic Property for Efficient Solar Steam Generation |
title_short | Willow Catkins-Derived Porous Carbon Membrane with
Hydrophilic Property for Efficient Solar Steam Generation |
title_sort | willow catkins-derived porous carbon membrane with
hydrophilic property for efficient solar steam generation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034019/ https://www.ncbi.nlm.nih.gov/pubmed/32095709 http://dx.doi.org/10.1021/acsomega.9b03718 |
work_keys_str_mv | AT zhangshaochun willowcatkinsderivedporouscarbonmembranewithhydrophilicpropertyforefficientsolarsteamgeneration AT zanglinlin willowcatkinsderivedporouscarbonmembranewithhydrophilicpropertyforefficientsolarsteamgeneration AT doutianwei willowcatkinsderivedporouscarbonmembranewithhydrophilicpropertyforefficientsolarsteamgeneration AT zoujinlong willowcatkinsderivedporouscarbonmembranewithhydrophilicpropertyforefficientsolarsteamgeneration AT zhangyanhong willowcatkinsderivedporouscarbonmembranewithhydrophilicpropertyforefficientsolarsteamgeneration AT sunliguo willowcatkinsderivedporouscarbonmembranewithhydrophilicpropertyforefficientsolarsteamgeneration |