Cargando…
HB-EGF Signaling Is Required for Glucose-Induced Pancreatic β-Cell Proliferation in Rats
The molecular mechanisms of β-cell compensation to metabolic stress are poorly understood. We previously observed that nutrient-induced β-cell proliferation in rats is dependent on epidermal growth factor receptor (EGFR) signaling. The aim of this study was to determine the role of the EGFR ligand h...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034189/ https://www.ncbi.nlm.nih.gov/pubmed/31882563 http://dx.doi.org/10.2337/db19-0643 |
Sumario: | The molecular mechanisms of β-cell compensation to metabolic stress are poorly understood. We previously observed that nutrient-induced β-cell proliferation in rats is dependent on epidermal growth factor receptor (EGFR) signaling. The aim of this study was to determine the role of the EGFR ligand heparin-binding EGF-like growth factor (HB-EGF) in the β-cell proliferative response to glucose, a β-cell mitogen and key regulator of β-cell mass in response to increased insulin demand. We show that exposure of isolated rat and human islets to HB-EGF stimulates β-cell proliferation. In rat islets, inhibition of EGFR or HB-EGF blocks the proliferative response not only to HB-EGF but also to glucose. Furthermore, knockdown of HB-EGF in rat islets blocks β-cell proliferation in response to glucose ex vivo and in vivo in transplanted glucose-infused rats. Mechanistically, we demonstrate that HB-EGF mRNA levels are increased in β-cells in response to glucose in a carbohydrate-response element–binding protein (ChREBP)–dependent manner. In addition, chromatin immunoprecipitation studies identified ChREBP binding sites in proximity to the HB-EGF gene. Finally, inhibition of Src family kinases, known to be involved in HB-EGF processing, abrogated glucose-induced β-cell proliferation. Our findings identify a novel glucose/HB-EGF/EGFR axis implicated in β-cell compensation to increased metabolic demand. |
---|