Cargando…

Fasciola gigantica, F. hepatica and Fasciola intermediate forms: geometric morphometrics and an artificial neural network to help morphological identification

BACKGROUND: Fasciola hepatica and F. gigantica cause fascioliasis in both humans and livestock. Some adult specimens of Fasciola sp. referred to as “intermediate forms” based on their genetic traits, are also frequently reported. Simple morphological criteria are unreliable for their specific identi...

Descripción completa

Detalles Bibliográficos
Autores principales: Sumruayphol, Suchada, Siribat, Praphaiphat, Dujardin, Jean-Pierre, Dujardin, Sébastien, Komalamisra, Chalit, Thaenkham, Urusa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034386/
https://www.ncbi.nlm.nih.gov/pubmed/32117632
http://dx.doi.org/10.7717/peerj.8597
_version_ 1783499867223490560
author Sumruayphol, Suchada
Siribat, Praphaiphat
Dujardin, Jean-Pierre
Dujardin, Sébastien
Komalamisra, Chalit
Thaenkham, Urusa
author_facet Sumruayphol, Suchada
Siribat, Praphaiphat
Dujardin, Jean-Pierre
Dujardin, Sébastien
Komalamisra, Chalit
Thaenkham, Urusa
author_sort Sumruayphol, Suchada
collection PubMed
description BACKGROUND: Fasciola hepatica and F. gigantica cause fascioliasis in both humans and livestock. Some adult specimens of Fasciola sp. referred to as “intermediate forms” based on their genetic traits, are also frequently reported. Simple morphological criteria are unreliable for their specific identification. In previous studies, promising phenotypic identification scores were obtained using morphometrics based on linear measurements (distances, angles, curves) between anatomical features. Such an approach is commonly termed “traditional” morphometrics, as opposed to “modern” morphometrics, which is based on the coordinates of anatomical points. METHODS: Here, we explored the possible improvements that modern methods of morphometrics, including landmark-based and outline-based approaches, could bring to solving the problem of the non-molecular identification of these parasites. F. gigantica and Fasciola intermediate forms suitable for morphometric characterization were selected from Thai strains following their molecular identification. Specimens of F. hepatica were obtained from the Liverpool School of Tropical Medicine (UK). Using these three taxa, we tested the taxonomic signal embedded in traditional linear measurements versus the coordinates of anatomical points (landmark- and outline-based approaches). Various statistical techniques of validated reclassification were used, based on either the shortest Mahalanobis distance, the maximum likelihood, or the artificial neural network method. RESULTS: Our results revealed that both traditional and modern morphometric approaches can help in the morphological identification of Fasciola sp. We showed that the accuracy of the traditional approach could be improved by selecting a subset of characters among the most contributive ones. The influence of size on discrimination by shape was much more important in traditional than in modern analyses. In our study, the modern approach provided different results according to the type of data: satisfactory when using pseudolandmarks (outlines), less satisfactory when using landmarks. The different reclassification methods provided approximately similar scores, with a special mention to the neural network, which allowed improvements in accuracy by combining data from both morphometric approaches. CONCLUSION: We conclude that morphometrics, whether traditional or modern, represent a valuable tool to assist in Fasciola species recognition. The general level of accuracy is comparable among the various methods, but their demands on skills and time differ. Based on the outline method, our study could provide the first description of the shape differences between species, highlighting the more globular contours of the intermediate forms.
format Online
Article
Text
id pubmed-7034386
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-70343862020-02-28 Fasciola gigantica, F. hepatica and Fasciola intermediate forms: geometric morphometrics and an artificial neural network to help morphological identification Sumruayphol, Suchada Siribat, Praphaiphat Dujardin, Jean-Pierre Dujardin, Sébastien Komalamisra, Chalit Thaenkham, Urusa PeerJ Mathematical Biology BACKGROUND: Fasciola hepatica and F. gigantica cause fascioliasis in both humans and livestock. Some adult specimens of Fasciola sp. referred to as “intermediate forms” based on their genetic traits, are also frequently reported. Simple morphological criteria are unreliable for their specific identification. In previous studies, promising phenotypic identification scores were obtained using morphometrics based on linear measurements (distances, angles, curves) between anatomical features. Such an approach is commonly termed “traditional” morphometrics, as opposed to “modern” morphometrics, which is based on the coordinates of anatomical points. METHODS: Here, we explored the possible improvements that modern methods of morphometrics, including landmark-based and outline-based approaches, could bring to solving the problem of the non-molecular identification of these parasites. F. gigantica and Fasciola intermediate forms suitable for morphometric characterization were selected from Thai strains following their molecular identification. Specimens of F. hepatica were obtained from the Liverpool School of Tropical Medicine (UK). Using these three taxa, we tested the taxonomic signal embedded in traditional linear measurements versus the coordinates of anatomical points (landmark- and outline-based approaches). Various statistical techniques of validated reclassification were used, based on either the shortest Mahalanobis distance, the maximum likelihood, or the artificial neural network method. RESULTS: Our results revealed that both traditional and modern morphometric approaches can help in the morphological identification of Fasciola sp. We showed that the accuracy of the traditional approach could be improved by selecting a subset of characters among the most contributive ones. The influence of size on discrimination by shape was much more important in traditional than in modern analyses. In our study, the modern approach provided different results according to the type of data: satisfactory when using pseudolandmarks (outlines), less satisfactory when using landmarks. The different reclassification methods provided approximately similar scores, with a special mention to the neural network, which allowed improvements in accuracy by combining data from both morphometric approaches. CONCLUSION: We conclude that morphometrics, whether traditional or modern, represent a valuable tool to assist in Fasciola species recognition. The general level of accuracy is comparable among the various methods, but their demands on skills and time differ. Based on the outline method, our study could provide the first description of the shape differences between species, highlighting the more globular contours of the intermediate forms. PeerJ Inc. 2020-02-18 /pmc/articles/PMC7034386/ /pubmed/32117632 http://dx.doi.org/10.7717/peerj.8597 Text en ©2020 Sumruayphol et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Mathematical Biology
Sumruayphol, Suchada
Siribat, Praphaiphat
Dujardin, Jean-Pierre
Dujardin, Sébastien
Komalamisra, Chalit
Thaenkham, Urusa
Fasciola gigantica, F. hepatica and Fasciola intermediate forms: geometric morphometrics and an artificial neural network to help morphological identification
title Fasciola gigantica, F. hepatica and Fasciola intermediate forms: geometric morphometrics and an artificial neural network to help morphological identification
title_full Fasciola gigantica, F. hepatica and Fasciola intermediate forms: geometric morphometrics and an artificial neural network to help morphological identification
title_fullStr Fasciola gigantica, F. hepatica and Fasciola intermediate forms: geometric morphometrics and an artificial neural network to help morphological identification
title_full_unstemmed Fasciola gigantica, F. hepatica and Fasciola intermediate forms: geometric morphometrics and an artificial neural network to help morphological identification
title_short Fasciola gigantica, F. hepatica and Fasciola intermediate forms: geometric morphometrics and an artificial neural network to help morphological identification
title_sort fasciola gigantica, f. hepatica and fasciola intermediate forms: geometric morphometrics and an artificial neural network to help morphological identification
topic Mathematical Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034386/
https://www.ncbi.nlm.nih.gov/pubmed/32117632
http://dx.doi.org/10.7717/peerj.8597
work_keys_str_mv AT sumruaypholsuchada fasciolagiganticafhepaticaandfasciolaintermediateformsgeometricmorphometricsandanartificialneuralnetworktohelpmorphologicalidentification
AT siribatpraphaiphat fasciolagiganticafhepaticaandfasciolaintermediateformsgeometricmorphometricsandanartificialneuralnetworktohelpmorphologicalidentification
AT dujardinjeanpierre fasciolagiganticafhepaticaandfasciolaintermediateformsgeometricmorphometricsandanartificialneuralnetworktohelpmorphologicalidentification
AT dujardinsebastien fasciolagiganticafhepaticaandfasciolaintermediateformsgeometricmorphometricsandanartificialneuralnetworktohelpmorphologicalidentification
AT komalamisrachalit fasciolagiganticafhepaticaandfasciolaintermediateformsgeometricmorphometricsandanartificialneuralnetworktohelpmorphologicalidentification
AT thaenkhamurusa fasciolagiganticafhepaticaandfasciolaintermediateformsgeometricmorphometricsandanartificialneuralnetworktohelpmorphologicalidentification