Cargando…

Serum lipopolysaccharide neutralizing capacity in ischemic stroke

INTRODUCTION: Periodontitis is associated with increased serum lipopolysaccharide (LPS) activity, which may be one mechanism linking periodontitis with the risk of cardiovascular diseases. As LPS-carrying proteins including lipoproteins modify LPS-activity, we investigated the determinants of serum...

Descripción completa

Detalles Bibliográficos
Autores principales: Leskelä, Jaakko, Pietiäinen, Milla, Safer, Anton, Lehto, Markku, Metso, Jari, Malle, Ernst, Buggle, Florian, Becher, Heiko, Sundvall, Jouko, Grau, Armin J., Pussinen, Pirkko J., Palm, Frederick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034831/
https://www.ncbi.nlm.nih.gov/pubmed/32084157
http://dx.doi.org/10.1371/journal.pone.0228806
Descripción
Sumario:INTRODUCTION: Periodontitis is associated with increased serum lipopolysaccharide (LPS) activity, which may be one mechanism linking periodontitis with the risk of cardiovascular diseases. As LPS-carrying proteins including lipoproteins modify LPS-activity, we investigated the determinants of serum LPS-neutralizing capacity (LPS-NC) in ischemic stroke. The association of LPS-NC and Aggregatibacter actinomycetemcomitans, a major microbial biomarker in periodontitis, was also investigated. MATERIALS AND METHODS: The assay to measure LPS-NC was set up by spiking serum samples with E. coli LPS. The LPS-NC, LPS-binding protein (LBP), soluble CD14 (sCD14), lipoprotein profiles, apo(lipoprotein) A-I, apoB, and phospholipid transfer protein (PLTP) activity, were determined in 98 ischemic stroke patients and 100 age- and sex-matched controls. Serum and saliva immune response to A. actinomycetemcomitans, its concentration in saliva, and serotype-distribution were examined. RESULTS: LPS-NC values ranged between 51–83% in the whole population. Although several of the LPS-NC determinants differed significantly between cases and controls (PLTP, sCD14, apoA-I, HDL-cholesterol), the levels did not (p = 0.056). The main determinants of LPS-NC were i) triglycerides (β = -0.68, p<0.001), and ii) HDL cholesterol (0.260, <0.001), LDL cholesterol (-0.265, <0.001), PLTP (-0.196, 0.011), and IgG against A. actinomycetemcomitans (0.174, 0.011). Saliva A. actinomycetemcomitans concentration was higher [log mean (95% CI), 4.39 (2.35–8.19) vs. 10.7 (5.45–21) genomes/ml, p = 0.023) and serotype D more frequent (4 vs. 0%, p = 0.043) in cases than controls. Serotypeablity or serotypes did not, however, relate to the LPS-NC. CONCLUSION: Serum LPS-NC comprised low PLTP-activity, triglyceride and LDL cholesterol concentrations, as well as high HDL cholesterol and IgG against A. actinomycetemcomitans. The present findings let us to conclude that LPS-NC did not associate with stroke.