Cargando…
Liquiritigenin-Loaded Submicron Emulsion Protects Against Doxorubicin-Induced Cardiotoxicity via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Activity
BACKGROUND: The clinical use of doxorubicin (DOX) is severely limited due to its cardiotoxicity. Thus, there is a need for prophylactic and treatment strategies against DOX-induced cardiotoxicity. PURPOSE: The purpose of this study was to develop a liquiritigenin-loaded submicron emulsion (Lq-SE) wi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034974/ https://www.ncbi.nlm.nih.gov/pubmed/32110010 http://dx.doi.org/10.2147/IJN.S235832 |
_version_ | 1783499978504667136 |
---|---|
author | Shi, Changcan Wu, Hongjuan Xu, Ke Cai, Ting Qin, Kunming Wu, Li Cai, Baochang |
author_facet | Shi, Changcan Wu, Hongjuan Xu, Ke Cai, Ting Qin, Kunming Wu, Li Cai, Baochang |
author_sort | Shi, Changcan |
collection | PubMed |
description | BACKGROUND: The clinical use of doxorubicin (DOX) is severely limited due to its cardiotoxicity. Thus, there is a need for prophylactic and treatment strategies against DOX-induced cardiotoxicity. PURPOSE: The purpose of this study was to develop a liquiritigenin-loaded submicron emulsion (Lq-SE) with enhanced oral bioavailability and to explore its efficacy against DOX-induced cardiotoxicity. METHODS: Lq-SE was prepared using high-pressure homogenization and characterized using several analytical techniques. The formulation was optimized by central composite design response surface methodology (CCD-RSM). In vivo pharmacokinetic studies, biochemical analyses, reactive oxygen species (ROS) assays, histopathologic assays, and Western blot analyses were performed. RESULTS: Each Lq-SE droplet had a mean particle size of 221.7 ± 5.80 nm, a polydispersity index (PDI) of 0.106 ± 0.068 and a zeta potential of −28.23 ± 0.42 mV. The area under the curve (AUC) of Lq-SE was 595% higher than that of liquiritigenin (Lq). Lq-SE decreased the release of serum cardiac enzymes and ameliorated histopathological changes in the hearts of DOX-challenged mice. Lq-SE significantly reduced oxidative stress by adjusting the levels of ROS, increasing the activity of antioxidative enzymes and inhibiting the protein expression of NOX4 and NOX2. Furthermore, Lq-SE significantly improved the inflammatory response through the mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) signalling pathway and induced cardiomyocyte apoptosis. CONCLUSION: Lq-SE could be used as an effective cardioprotective agent against DOX in chemotherapy to enable better treatment outcomes. |
format | Online Article Text |
id | pubmed-7034974 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-70349742020-02-27 Liquiritigenin-Loaded Submicron Emulsion Protects Against Doxorubicin-Induced Cardiotoxicity via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Activity Shi, Changcan Wu, Hongjuan Xu, Ke Cai, Ting Qin, Kunming Wu, Li Cai, Baochang Int J Nanomedicine Original Research BACKGROUND: The clinical use of doxorubicin (DOX) is severely limited due to its cardiotoxicity. Thus, there is a need for prophylactic and treatment strategies against DOX-induced cardiotoxicity. PURPOSE: The purpose of this study was to develop a liquiritigenin-loaded submicron emulsion (Lq-SE) with enhanced oral bioavailability and to explore its efficacy against DOX-induced cardiotoxicity. METHODS: Lq-SE was prepared using high-pressure homogenization and characterized using several analytical techniques. The formulation was optimized by central composite design response surface methodology (CCD-RSM). In vivo pharmacokinetic studies, biochemical analyses, reactive oxygen species (ROS) assays, histopathologic assays, and Western blot analyses were performed. RESULTS: Each Lq-SE droplet had a mean particle size of 221.7 ± 5.80 nm, a polydispersity index (PDI) of 0.106 ± 0.068 and a zeta potential of −28.23 ± 0.42 mV. The area under the curve (AUC) of Lq-SE was 595% higher than that of liquiritigenin (Lq). Lq-SE decreased the release of serum cardiac enzymes and ameliorated histopathological changes in the hearts of DOX-challenged mice. Lq-SE significantly reduced oxidative stress by adjusting the levels of ROS, increasing the activity of antioxidative enzymes and inhibiting the protein expression of NOX4 and NOX2. Furthermore, Lq-SE significantly improved the inflammatory response through the mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) signalling pathway and induced cardiomyocyte apoptosis. CONCLUSION: Lq-SE could be used as an effective cardioprotective agent against DOX in chemotherapy to enable better treatment outcomes. Dove 2020-02-17 /pmc/articles/PMC7034974/ /pubmed/32110010 http://dx.doi.org/10.2147/IJN.S235832 Text en © 2020 Shi et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Shi, Changcan Wu, Hongjuan Xu, Ke Cai, Ting Qin, Kunming Wu, Li Cai, Baochang Liquiritigenin-Loaded Submicron Emulsion Protects Against Doxorubicin-Induced Cardiotoxicity via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Activity |
title | Liquiritigenin-Loaded Submicron Emulsion Protects Against Doxorubicin-Induced Cardiotoxicity via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Activity |
title_full | Liquiritigenin-Loaded Submicron Emulsion Protects Against Doxorubicin-Induced Cardiotoxicity via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Activity |
title_fullStr | Liquiritigenin-Loaded Submicron Emulsion Protects Against Doxorubicin-Induced Cardiotoxicity via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Activity |
title_full_unstemmed | Liquiritigenin-Loaded Submicron Emulsion Protects Against Doxorubicin-Induced Cardiotoxicity via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Activity |
title_short | Liquiritigenin-Loaded Submicron Emulsion Protects Against Doxorubicin-Induced Cardiotoxicity via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Activity |
title_sort | liquiritigenin-loaded submicron emulsion protects against doxorubicin-induced cardiotoxicity via antioxidant, anti-inflammatory, and anti-apoptotic activity |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034974/ https://www.ncbi.nlm.nih.gov/pubmed/32110010 http://dx.doi.org/10.2147/IJN.S235832 |
work_keys_str_mv | AT shichangcan liquiritigeninloadedsubmicronemulsionprotectsagainstdoxorubicininducedcardiotoxicityviaantioxidantantiinflammatoryandantiapoptoticactivity AT wuhongjuan liquiritigeninloadedsubmicronemulsionprotectsagainstdoxorubicininducedcardiotoxicityviaantioxidantantiinflammatoryandantiapoptoticactivity AT xuke liquiritigeninloadedsubmicronemulsionprotectsagainstdoxorubicininducedcardiotoxicityviaantioxidantantiinflammatoryandantiapoptoticactivity AT caiting liquiritigeninloadedsubmicronemulsionprotectsagainstdoxorubicininducedcardiotoxicityviaantioxidantantiinflammatoryandantiapoptoticactivity AT qinkunming liquiritigeninloadedsubmicronemulsionprotectsagainstdoxorubicininducedcardiotoxicityviaantioxidantantiinflammatoryandantiapoptoticactivity AT wuli liquiritigeninloadedsubmicronemulsionprotectsagainstdoxorubicininducedcardiotoxicityviaantioxidantantiinflammatoryandantiapoptoticactivity AT caibaochang liquiritigeninloadedsubmicronemulsionprotectsagainstdoxorubicininducedcardiotoxicityviaantioxidantantiinflammatoryandantiapoptoticactivity |