Cargando…

Demography of the salt marsh harvest mouse (Reithrodontomys raviventris halicoetes) and associated rodents in tidal and managed wetlands

Suisun Marsh (Solano County, California) is the largest contiguous marsh remaining on the West Coast of the United States, and makes up approximately 10% of the wetlands remaining in the San Francisco Estuary. Suisun Marsh has been safeguarded from development through the operation of over 100 priva...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Katherine R, Barthman-Thompson, Laureen M, Estrella, Sarah K, Riley, Melissa K, Trombley, Sadie N, Rose, Candice A, Kelt, Douglas A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035210/
https://www.ncbi.nlm.nih.gov/pubmed/32099266
http://dx.doi.org/10.1093/jmammal/gyz183
Descripción
Sumario:Suisun Marsh (Solano County, California) is the largest contiguous marsh remaining on the West Coast of the United States, and makes up approximately 10% of the wetlands remaining in the San Francisco Estuary. Suisun Marsh has been safeguarded from development through the operation of over 100 privately owned waterfowl hunting clubs, which manage for diked waterfowl habitat. However, this management—and the subsequent loss of tidal influence—has been considered harmful for some species, including the endangered salt marsh harvest mouse (SMHM; Reithrodontomys raviventris). To determine the value of tidal wetlands relative to those managed for waterfowl, we performed periodic surveys for rodents in managed and tidal wetlands over 5 years, and used capture-mark-recapture analyses to estimate demographic parameters and abundance for the three most common rodents—the northern SMHM (R. r. halicoetes), the western harvest mouse (a sympatric native species; R. megalotis, WHM), and the house mouse (a sympatric invasive species; Mus musculus). Wetland type had no effect on detection, temporary emigration, or survival for any of these species. However, fecundity and population growth for all three species were affected by an interaction of season and wetland type, although none of these parameters was consistently superior in either habitat type. Estimated abundance of SMHM and Mus was similar in both wetland types, whereas WHM were more abundant in managed wetlands. Salt marsh harvest mice also showed no affinity for any microhabitat characteristics associated with tidal wetlands. Managed wetlands in Suisun Marsh support SMHM and Mus equally, and abundances of WHM were greater than in tidal wetlands, suggesting managed wetlands may be superior in terms of supporting native rodents. As climate change and sea level rise are predicted to threaten coastal marshes, these results suggest the recovery strategy for SMHM could incorporate managed wetlands.