Cargando…

Kynurenine Pathway as a New Target of Cognitive Impairment Induced by Lead Toxicity During the Lactation

The immature brain is especially vulnerable to lead (Pb(2+)) toxicity, which is considered an environmental neurotoxin. Pb(2+) exposure during development compromises the cognitive and behavioral attributes which persist even later in adulthood, but the mechanisms involved in this effect are still u...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramirez Ortega, Daniela, Ovalle Rodríguez, Paulina, Pineda, Benjamín, González Esquivel, Dinora F., Ramos Chávez, Lucio Antonio, Vázquez Cervantes, Gustavo I., Roldán Roldán, Gabriel, Pérez de la Cruz, Gonzalo, Díaz Ruiz, Araceli, Méndez Armenta, Marisela, Marcial Quino, Jaime, Gómez Manzo, Saul, Ríos, Camilo, Pérez de la Cruz, Verónica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035386/
https://www.ncbi.nlm.nih.gov/pubmed/32081969
http://dx.doi.org/10.1038/s41598-020-60159-3
Descripción
Sumario:The immature brain is especially vulnerable to lead (Pb(2+)) toxicity, which is considered an environmental neurotoxin. Pb(2+) exposure during development compromises the cognitive and behavioral attributes which persist even later in adulthood, but the mechanisms involved in this effect are still unknown. On the other hand, the kynurenine pathway metabolites are modulators of different receptors and neurotransmitters related to cognition; specifically, high kynurenic acid levels has been involved with cognitive impairment, including deficits in spatial working memory and attention process. The aim of this study was to evaluate the relationship between the neurocognitive impairment induced by Pb(2+) toxicity and the kynurenine pathway. The dams were divided in control group and Pb(2+) group, which were given tap water or 500 ppm of lead acetate in drinking water ad libitum, respectively, from 0 to 23 postnatal day (PND). The poison was withdrawn, and tap water was given until 60 PND of the progeny. The locomotor activity in open field, redox environment, cellular function, kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK) levels as well as kynurenine aminotransferase (KAT) and kynurenine monooxygenase (KMO) activities were evaluated at both 23 and 60 PND. Additionally, learning and memory through buried food location test and expression of KAT and KMO, and cellular damage were evaluated at 60 PND. Pb(2+) group showed redox environment alterations, cellular dysfunction and KYNA and 3-HK levels increased. No changes were observed in KAT activity. KMO activity increased at 23 PND and decreased at 60 PND. No changes in KAT and KMO expression in control and Pb(2+) group were observed, however the number of positive cells expressing KMO and KAT increased in relation to control, which correlated with the loss of neuronal population. Cognitive impairment was observed in Pb(2+) group which was correlated with KYNA levels. These results suggest that the increase in KYNA levels could be a mechanism by which Pb(2+) induces cognitive impairment in adult mice, hence the modulation of kynurenine pathway represents a potential target to improve behavioural alterations produced by this environmental toxin.