Cargando…
Asiatic Acid Interferes with Invasion and Proliferation of Breast Cancer Cells by Inhibiting WAVE3 Activation through PI3K/AKT Signaling Pathway
OBJECTIVE: To explore the ability of asiatic acid to interfere with the invasion and proliferation of breast cancer cells by inhibiting WAVE3 expression and activation through the PI3K/AKT signaling pathway. METHODS: The MDA-MB-231 cells with strong invasiveness were screened by transwell assay, and...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035546/ https://www.ncbi.nlm.nih.gov/pubmed/32104680 http://dx.doi.org/10.1155/2020/1874387 |
_version_ | 1783500080857219072 |
---|---|
author | Gou, Xiao-jun Bai, Huan-huan Liu, Li-wei Chen, Hong-yu Shi, Qi Chang, Li-sheng Ding, Ming-ming Shi, Qin Zhou, Mei-xiang Chen, Wen-li Zhang, Li-min |
author_facet | Gou, Xiao-jun Bai, Huan-huan Liu, Li-wei Chen, Hong-yu Shi, Qi Chang, Li-sheng Ding, Ming-ming Shi, Qin Zhou, Mei-xiang Chen, Wen-li Zhang, Li-min |
author_sort | Gou, Xiao-jun |
collection | PubMed |
description | OBJECTIVE: To explore the ability of asiatic acid to interfere with the invasion and proliferation of breast cancer cells by inhibiting WAVE3 expression and activation through the PI3K/AKT signaling pathway. METHODS: The MDA-MB-231 cells with strong invasiveness were screened by transwell assay, and plasmids with high expression of WAVE3 were constructed for transfection. The transfection effect and protein expression level of plasmids were verified by PCR and WB. The effects of asiatic acid on cell proliferation and invasion were investigated by flow cytometry. The xenografted tumor models in nude mice were established to study the antitumor activity of asiatic acid. RESULTS: Asiatic acid significantly inhibited the activity of MDA-MB-231 cells, and the expression level of WAVE3 increased significantly in the tissue of ductal carcinoma in situ and was lower than that in the metastasis group. After plasmid transfection, the mRNA and protein expression of WAVE3 increased significantly in the cells. Asiatic acid at different concentrations had an impact on cell apoptosis and invasion and could significantly inhibit the expression of WAVE3, P53, p-PI3K, p-AKT, and other proteins. The T/C(%) of asiatic acid (50 mg/kg) for MDA-MB-231(F10) xenografted tumor in nude mice was 46.33%, with a tumor inhibition rate of 59.55%. Asiatic acid could significantly inhibit the growth of MDA-MB-231 (F10) xenografted tumors in nude mice (p < 0.05). CONCLUSIONS: Asiatic acid interferes with the ability of breast cancer cells to invade and proliferate by inhibiting WAVE3 expression and activation and the mechanism of action may be related to the PI3K/AKT signaling pathway. |
format | Online Article Text |
id | pubmed-7035546 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-70355462020-02-26 Asiatic Acid Interferes with Invasion and Proliferation of Breast Cancer Cells by Inhibiting WAVE3 Activation through PI3K/AKT Signaling Pathway Gou, Xiao-jun Bai, Huan-huan Liu, Li-wei Chen, Hong-yu Shi, Qi Chang, Li-sheng Ding, Ming-ming Shi, Qin Zhou, Mei-xiang Chen, Wen-li Zhang, Li-min Biomed Res Int Research Article OBJECTIVE: To explore the ability of asiatic acid to interfere with the invasion and proliferation of breast cancer cells by inhibiting WAVE3 expression and activation through the PI3K/AKT signaling pathway. METHODS: The MDA-MB-231 cells with strong invasiveness were screened by transwell assay, and plasmids with high expression of WAVE3 were constructed for transfection. The transfection effect and protein expression level of plasmids were verified by PCR and WB. The effects of asiatic acid on cell proliferation and invasion were investigated by flow cytometry. The xenografted tumor models in nude mice were established to study the antitumor activity of asiatic acid. RESULTS: Asiatic acid significantly inhibited the activity of MDA-MB-231 cells, and the expression level of WAVE3 increased significantly in the tissue of ductal carcinoma in situ and was lower than that in the metastasis group. After plasmid transfection, the mRNA and protein expression of WAVE3 increased significantly in the cells. Asiatic acid at different concentrations had an impact on cell apoptosis and invasion and could significantly inhibit the expression of WAVE3, P53, p-PI3K, p-AKT, and other proteins. The T/C(%) of asiatic acid (50 mg/kg) for MDA-MB-231(F10) xenografted tumor in nude mice was 46.33%, with a tumor inhibition rate of 59.55%. Asiatic acid could significantly inhibit the growth of MDA-MB-231 (F10) xenografted tumors in nude mice (p < 0.05). CONCLUSIONS: Asiatic acid interferes with the ability of breast cancer cells to invade and proliferate by inhibiting WAVE3 expression and activation and the mechanism of action may be related to the PI3K/AKT signaling pathway. Hindawi 2020-02-10 /pmc/articles/PMC7035546/ /pubmed/32104680 http://dx.doi.org/10.1155/2020/1874387 Text en Copyright © 2020 Xiao-jun Gou et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Gou, Xiao-jun Bai, Huan-huan Liu, Li-wei Chen, Hong-yu Shi, Qi Chang, Li-sheng Ding, Ming-ming Shi, Qin Zhou, Mei-xiang Chen, Wen-li Zhang, Li-min Asiatic Acid Interferes with Invasion and Proliferation of Breast Cancer Cells by Inhibiting WAVE3 Activation through PI3K/AKT Signaling Pathway |
title | Asiatic Acid Interferes with Invasion and Proliferation of Breast Cancer Cells by Inhibiting WAVE3 Activation through PI3K/AKT Signaling Pathway |
title_full | Asiatic Acid Interferes with Invasion and Proliferation of Breast Cancer Cells by Inhibiting WAVE3 Activation through PI3K/AKT Signaling Pathway |
title_fullStr | Asiatic Acid Interferes with Invasion and Proliferation of Breast Cancer Cells by Inhibiting WAVE3 Activation through PI3K/AKT Signaling Pathway |
title_full_unstemmed | Asiatic Acid Interferes with Invasion and Proliferation of Breast Cancer Cells by Inhibiting WAVE3 Activation through PI3K/AKT Signaling Pathway |
title_short | Asiatic Acid Interferes with Invasion and Proliferation of Breast Cancer Cells by Inhibiting WAVE3 Activation through PI3K/AKT Signaling Pathway |
title_sort | asiatic acid interferes with invasion and proliferation of breast cancer cells by inhibiting wave3 activation through pi3k/akt signaling pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035546/ https://www.ncbi.nlm.nih.gov/pubmed/32104680 http://dx.doi.org/10.1155/2020/1874387 |
work_keys_str_mv | AT gouxiaojun asiaticacidinterfereswithinvasionandproliferationofbreastcancercellsbyinhibitingwave3activationthroughpi3kaktsignalingpathway AT baihuanhuan asiaticacidinterfereswithinvasionandproliferationofbreastcancercellsbyinhibitingwave3activationthroughpi3kaktsignalingpathway AT liuliwei asiaticacidinterfereswithinvasionandproliferationofbreastcancercellsbyinhibitingwave3activationthroughpi3kaktsignalingpathway AT chenhongyu asiaticacidinterfereswithinvasionandproliferationofbreastcancercellsbyinhibitingwave3activationthroughpi3kaktsignalingpathway AT shiqi asiaticacidinterfereswithinvasionandproliferationofbreastcancercellsbyinhibitingwave3activationthroughpi3kaktsignalingpathway AT changlisheng asiaticacidinterfereswithinvasionandproliferationofbreastcancercellsbyinhibitingwave3activationthroughpi3kaktsignalingpathway AT dingmingming asiaticacidinterfereswithinvasionandproliferationofbreastcancercellsbyinhibitingwave3activationthroughpi3kaktsignalingpathway AT shiqin asiaticacidinterfereswithinvasionandproliferationofbreastcancercellsbyinhibitingwave3activationthroughpi3kaktsignalingpathway AT zhoumeixiang asiaticacidinterfereswithinvasionandproliferationofbreastcancercellsbyinhibitingwave3activationthroughpi3kaktsignalingpathway AT chenwenli asiaticacidinterfereswithinvasionandproliferationofbreastcancercellsbyinhibitingwave3activationthroughpi3kaktsignalingpathway AT zhanglimin asiaticacidinterfereswithinvasionandproliferationofbreastcancercellsbyinhibitingwave3activationthroughpi3kaktsignalingpathway |