Cargando…
A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis
BACKGROUND: Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at the single cell level in an unbiased manner. Dimensionality reduction is an essential first step in downstream analysis of the scRNA-seq dat...
Autores principales: | Lin, Eugene, Mukherjee, Sudipto, Kannan, Sreeram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035735/ https://www.ncbi.nlm.nih.gov/pubmed/32085701 http://dx.doi.org/10.1186/s12859-020-3401-5 |
Ejemplares similares
-
Adversarial and variational autoencoders improve metagenomic binning
por: Líndez, Pau Piera, et al.
Publicado: (2023) -
Integrating Multiple Single-Cell RNA Sequencing Datasets Using Adversarial Autoencoders
por: Wang, Xun, et al.
Publicado: (2023) -
Sequential Variational Autoencoder with Adversarial Classifier for Video Disentanglement
por: Haga, Takeshi, et al.
Publicado: (2023) -
Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics
por: Hu, Qiwen, et al.
Publicado: (2019) -
VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder
por: Wang, Dongfang, et al.
Publicado: (2018)