Cargando…
Unsupervised Bayesian learning for rice panicle segmentation with UAV images
BACKGROUND: In this paper, an unsupervised Bayesian learning method is proposed to perform rice panicle segmentation with optical images taken by unmanned aerial vehicles (UAV) over paddy fields. Unlike existing supervised learning methods that require a large amount of labeled training data, the un...
Autores principales: | Hayat, Md Abul, Wu, Jingxian, Cao, Yingli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035759/ https://www.ncbi.nlm.nih.gov/pubmed/32123536 http://dx.doi.org/10.1186/s13007-020-00567-8 |
Ejemplares similares
-
Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization
por: Xiong, Xiong, et al.
Publicado: (2017) -
Inversion modeling of japonica rice canopy chlorophyll content with UAV hyperspectral remote sensing
por: Cao, Yingli, et al.
Publicado: (2020) -
Panicle-3D: Efficient Phenotyping Tool for Precise Semantic Segmentation of Rice Panicle Point Cloud
por: Gong, Liang, et al.
Publicado: (2021) -
Comprehensive dataset of annotated rice panicle image from Bangladesh
por: Rashid, Mohammad Rifat Ahmmad, et al.
Publicado: (2023) -
Field-scale rice yield estimation based on UAV-based MiniSAR data with Ku band and modified water-cloud model of panicle layer at panicle stage
por: Wang, Zhiyong, et al.
Publicado: (2022)