Cargando…

A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain

OBJECTIVE. Electrode arrays for chronic implantation in the brain are a critical technology in both neuroscience and medicine. Recently, flexible, thin-film polymer electrode arrays have shown promise in facilitating stable, single-unit recordings spanning months in rats. While array flexibility enh...

Descripción completa

Detalles Bibliográficos
Autores principales: Joo, Hannah R, Fan, Jiang Lan, Chen, Supin, Pebbles, Jeanine A, Liang, Hexin, Chung, Jason E, Yorita, Allison M, Tooker, Angela C, Tolosa, Vanessa M, Geaghan-Breiner, Charlotte, Roumis, Demetris K, Liu, Daniel F, Haque, Razi, Frank, Loren M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036288/
https://www.ncbi.nlm.nih.gov/pubmed/31216526
http://dx.doi.org/10.1088/1741-2552/ab2b2e
_version_ 1783500196526686208
author Joo, Hannah R
Fan, Jiang Lan
Chen, Supin
Pebbles, Jeanine A
Liang, Hexin
Chung, Jason E
Yorita, Allison M
Tooker, Angela C
Tolosa, Vanessa M
Geaghan-Breiner, Charlotte
Roumis, Demetris K
Liu, Daniel F
Haque, Razi
Frank, Loren M
author_facet Joo, Hannah R
Fan, Jiang Lan
Chen, Supin
Pebbles, Jeanine A
Liang, Hexin
Chung, Jason E
Yorita, Allison M
Tooker, Angela C
Tolosa, Vanessa M
Geaghan-Breiner, Charlotte
Roumis, Demetris K
Liu, Daniel F
Haque, Razi
Frank, Loren M
author_sort Joo, Hannah R
collection PubMed
description OBJECTIVE. Electrode arrays for chronic implantation in the brain are a critical technology in both neuroscience and medicine. Recently, flexible, thin-film polymer electrode arrays have shown promise in facilitating stable, single-unit recordings spanning months in rats. While array flexibility enhances integration with neural tissue, it also requires removal of the dura mater, the tough membrane surrounding the brain, and temporary bracing to penetrate the brain parenchyma. Durotomy increases brain swelling, vascular damage, and surgical time. Insertion using a bracing shuttle results in additional vascular damage and brain compression, which increase with device diameter; while a higher-diameter shuttle will have a higher critical load and more likely penetrate dura, it will damage more brain parenchyma and vasculature. One way to penetrate the intact dura and limit tissue compression without increasing shuttle diameter is to reduce the force required for insertion by sharpening the shuttle tip. APPROACH. We describe a novel design and fabrication process to create silicon insertion shuttles that are sharp in three dimensions and can penetrate rat dura, for faster, easier, and less damaging implantation of polymer arrays. Sharpened profiles are obtained by reflowing patterned photoresist, then transferring its sloped profile to silicon with dry etches. MAIN RESULTS. We demonstrate that sharpened shuttles can reliably implant polymer probes through dura to yield high quality single unit and local field potential recordings for at least 95 days. On insertion directly through dura, tissue compression is minimal. SIGNIFICANCE. This is the first demonstration of a rat dural-penetrating array for chronic recording. This device obviates the need for a durotomy, reducing surgical time and risk of damage to the blood-brain barrier. This is an improvement to state-of-the-art flexible polymer electrode arrays that facilitates their implantation, particularly in multi-site recording experiments. This sharpening process can also be integrated into silicon electrode array fabrication.
format Online
Article
Text
id pubmed-7036288
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-70362882020-02-23 A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain Joo, Hannah R Fan, Jiang Lan Chen, Supin Pebbles, Jeanine A Liang, Hexin Chung, Jason E Yorita, Allison M Tooker, Angela C Tolosa, Vanessa M Geaghan-Breiner, Charlotte Roumis, Demetris K Liu, Daniel F Haque, Razi Frank, Loren M J Neural Eng Article OBJECTIVE. Electrode arrays for chronic implantation in the brain are a critical technology in both neuroscience and medicine. Recently, flexible, thin-film polymer electrode arrays have shown promise in facilitating stable, single-unit recordings spanning months in rats. While array flexibility enhances integration with neural tissue, it also requires removal of the dura mater, the tough membrane surrounding the brain, and temporary bracing to penetrate the brain parenchyma. Durotomy increases brain swelling, vascular damage, and surgical time. Insertion using a bracing shuttle results in additional vascular damage and brain compression, which increase with device diameter; while a higher-diameter shuttle will have a higher critical load and more likely penetrate dura, it will damage more brain parenchyma and vasculature. One way to penetrate the intact dura and limit tissue compression without increasing shuttle diameter is to reduce the force required for insertion by sharpening the shuttle tip. APPROACH. We describe a novel design and fabrication process to create silicon insertion shuttles that are sharp in three dimensions and can penetrate rat dura, for faster, easier, and less damaging implantation of polymer arrays. Sharpened profiles are obtained by reflowing patterned photoresist, then transferring its sloped profile to silicon with dry etches. MAIN RESULTS. We demonstrate that sharpened shuttles can reliably implant polymer probes through dura to yield high quality single unit and local field potential recordings for at least 95 days. On insertion directly through dura, tissue compression is minimal. SIGNIFICANCE. This is the first demonstration of a rat dural-penetrating array for chronic recording. This device obviates the need for a durotomy, reducing surgical time and risk of damage to the blood-brain barrier. This is an improvement to state-of-the-art flexible polymer electrode arrays that facilitates their implantation, particularly in multi-site recording experiments. This sharpening process can also be integrated into silicon electrode array fabrication. 2019-10-29 /pmc/articles/PMC7036288/ /pubmed/31216526 http://dx.doi.org/10.1088/1741-2552/ab2b2e Text en Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence (http://creativecommons.org/licenses/by/3.0) . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
spellingShingle Article
Joo, Hannah R
Fan, Jiang Lan
Chen, Supin
Pebbles, Jeanine A
Liang, Hexin
Chung, Jason E
Yorita, Allison M
Tooker, Angela C
Tolosa, Vanessa M
Geaghan-Breiner, Charlotte
Roumis, Demetris K
Liu, Daniel F
Haque, Razi
Frank, Loren M
A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain
title A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain
title_full A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain
title_fullStr A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain
title_full_unstemmed A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain
title_short A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain
title_sort microfabricated, 3d-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036288/
https://www.ncbi.nlm.nih.gov/pubmed/31216526
http://dx.doi.org/10.1088/1741-2552/ab2b2e
work_keys_str_mv AT joohannahr amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT fanjianglan amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT chensupin amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT pebblesjeaninea amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT lianghexin amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT chungjasone amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT yoritaallisonm amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT tookerangelac amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT tolosavanessam amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT geaghanbreinercharlotte amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT roumisdemetrisk amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT liudanielf amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT haquerazi amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT franklorenm amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT joohannahr microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT fanjianglan microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT chensupin microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT pebblesjeaninea microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT lianghexin microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT chungjasone microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT yoritaallisonm microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT tookerangelac microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT tolosavanessam microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT geaghanbreinercharlotte microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT roumisdemetrisk microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT liudanielf microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT haquerazi microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain
AT franklorenm microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain