Cargando…
A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain
OBJECTIVE. Electrode arrays for chronic implantation in the brain are a critical technology in both neuroscience and medicine. Recently, flexible, thin-film polymer electrode arrays have shown promise in facilitating stable, single-unit recordings spanning months in rats. While array flexibility enh...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036288/ https://www.ncbi.nlm.nih.gov/pubmed/31216526 http://dx.doi.org/10.1088/1741-2552/ab2b2e |
_version_ | 1783500196526686208 |
---|---|
author | Joo, Hannah R Fan, Jiang Lan Chen, Supin Pebbles, Jeanine A Liang, Hexin Chung, Jason E Yorita, Allison M Tooker, Angela C Tolosa, Vanessa M Geaghan-Breiner, Charlotte Roumis, Demetris K Liu, Daniel F Haque, Razi Frank, Loren M |
author_facet | Joo, Hannah R Fan, Jiang Lan Chen, Supin Pebbles, Jeanine A Liang, Hexin Chung, Jason E Yorita, Allison M Tooker, Angela C Tolosa, Vanessa M Geaghan-Breiner, Charlotte Roumis, Demetris K Liu, Daniel F Haque, Razi Frank, Loren M |
author_sort | Joo, Hannah R |
collection | PubMed |
description | OBJECTIVE. Electrode arrays for chronic implantation in the brain are a critical technology in both neuroscience and medicine. Recently, flexible, thin-film polymer electrode arrays have shown promise in facilitating stable, single-unit recordings spanning months in rats. While array flexibility enhances integration with neural tissue, it also requires removal of the dura mater, the tough membrane surrounding the brain, and temporary bracing to penetrate the brain parenchyma. Durotomy increases brain swelling, vascular damage, and surgical time. Insertion using a bracing shuttle results in additional vascular damage and brain compression, which increase with device diameter; while a higher-diameter shuttle will have a higher critical load and more likely penetrate dura, it will damage more brain parenchyma and vasculature. One way to penetrate the intact dura and limit tissue compression without increasing shuttle diameter is to reduce the force required for insertion by sharpening the shuttle tip. APPROACH. We describe a novel design and fabrication process to create silicon insertion shuttles that are sharp in three dimensions and can penetrate rat dura, for faster, easier, and less damaging implantation of polymer arrays. Sharpened profiles are obtained by reflowing patterned photoresist, then transferring its sloped profile to silicon with dry etches. MAIN RESULTS. We demonstrate that sharpened shuttles can reliably implant polymer probes through dura to yield high quality single unit and local field potential recordings for at least 95 days. On insertion directly through dura, tissue compression is minimal. SIGNIFICANCE. This is the first demonstration of a rat dural-penetrating array for chronic recording. This device obviates the need for a durotomy, reducing surgical time and risk of damage to the blood-brain barrier. This is an improvement to state-of-the-art flexible polymer electrode arrays that facilitates their implantation, particularly in multi-site recording experiments. This sharpening process can also be integrated into silicon electrode array fabrication. |
format | Online Article Text |
id | pubmed-7036288 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-70362882020-02-23 A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain Joo, Hannah R Fan, Jiang Lan Chen, Supin Pebbles, Jeanine A Liang, Hexin Chung, Jason E Yorita, Allison M Tooker, Angela C Tolosa, Vanessa M Geaghan-Breiner, Charlotte Roumis, Demetris K Liu, Daniel F Haque, Razi Frank, Loren M J Neural Eng Article OBJECTIVE. Electrode arrays for chronic implantation in the brain are a critical technology in both neuroscience and medicine. Recently, flexible, thin-film polymer electrode arrays have shown promise in facilitating stable, single-unit recordings spanning months in rats. While array flexibility enhances integration with neural tissue, it also requires removal of the dura mater, the tough membrane surrounding the brain, and temporary bracing to penetrate the brain parenchyma. Durotomy increases brain swelling, vascular damage, and surgical time. Insertion using a bracing shuttle results in additional vascular damage and brain compression, which increase with device diameter; while a higher-diameter shuttle will have a higher critical load and more likely penetrate dura, it will damage more brain parenchyma and vasculature. One way to penetrate the intact dura and limit tissue compression without increasing shuttle diameter is to reduce the force required for insertion by sharpening the shuttle tip. APPROACH. We describe a novel design and fabrication process to create silicon insertion shuttles that are sharp in three dimensions and can penetrate rat dura, for faster, easier, and less damaging implantation of polymer arrays. Sharpened profiles are obtained by reflowing patterned photoresist, then transferring its sloped profile to silicon with dry etches. MAIN RESULTS. We demonstrate that sharpened shuttles can reliably implant polymer probes through dura to yield high quality single unit and local field potential recordings for at least 95 days. On insertion directly through dura, tissue compression is minimal. SIGNIFICANCE. This is the first demonstration of a rat dural-penetrating array for chronic recording. This device obviates the need for a durotomy, reducing surgical time and risk of damage to the blood-brain barrier. This is an improvement to state-of-the-art flexible polymer electrode arrays that facilitates their implantation, particularly in multi-site recording experiments. This sharpening process can also be integrated into silicon electrode array fabrication. 2019-10-29 /pmc/articles/PMC7036288/ /pubmed/31216526 http://dx.doi.org/10.1088/1741-2552/ab2b2e Text en Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence (http://creativecommons.org/licenses/by/3.0) . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
spellingShingle | Article Joo, Hannah R Fan, Jiang Lan Chen, Supin Pebbles, Jeanine A Liang, Hexin Chung, Jason E Yorita, Allison M Tooker, Angela C Tolosa, Vanessa M Geaghan-Breiner, Charlotte Roumis, Demetris K Liu, Daniel F Haque, Razi Frank, Loren M A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain |
title | A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain |
title_full | A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain |
title_fullStr | A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain |
title_full_unstemmed | A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain |
title_short | A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain |
title_sort | microfabricated, 3d-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036288/ https://www.ncbi.nlm.nih.gov/pubmed/31216526 http://dx.doi.org/10.1088/1741-2552/ab2b2e |
work_keys_str_mv | AT joohannahr amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT fanjianglan amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT chensupin amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT pebblesjeaninea amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT lianghexin amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT chungjasone amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT yoritaallisonm amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT tookerangelac amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT tolosavanessam amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT geaghanbreinercharlotte amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT roumisdemetrisk amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT liudanielf amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT haquerazi amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT franklorenm amicrofabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT joohannahr microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT fanjianglan microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT chensupin microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT pebblesjeaninea microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT lianghexin microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT chungjasone microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT yoritaallisonm microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT tookerangelac microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT tolosavanessam microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT geaghanbreinercharlotte microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT roumisdemetrisk microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT liudanielf microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT haquerazi microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain AT franklorenm microfabricated3dsharpenedsiliconshuttleforinsertionofflexibleelectrodearraysthroughduramaterintobrain |