Cargando…
The Effect of Sandblasting and Coating of Zirconia by Nano Composites on Bond Strength of Zirconia to Resin Cements
STATEMENT OF THE PROBLEM: Despite yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) high strength in dental restoration application, Zr- the framework has a low tendency to react chemically with cement which is the main reason of these restoration failures. PURPOSE: The aim of this in vitro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shiraz University of Medical Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036355/ https://www.ncbi.nlm.nih.gov/pubmed/32158786 http://dx.doi.org/10.30476/DENTJODS.2019.77789.0 |
_version_ | 1783500206718844928 |
---|---|
author | Karami Zarandi, Parisa Madani, Azamsadat Bagheri, Hosein Moslemion, Maryam |
author_facet | Karami Zarandi, Parisa Madani, Azamsadat Bagheri, Hosein Moslemion, Maryam |
author_sort | Karami Zarandi, Parisa |
collection | PubMed |
description | STATEMENT OF THE PROBLEM: Despite yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) high strength in dental restoration application, Zr- the framework has a low tendency to react chemically with cement which is the main reason of these restoration failures. PURPOSE: The aim of this in vitro study was to evaluate the effect of Y-TZP coating by nanocomposite of silica and aluminosilicate according to the sol-gel dip-coating technique on the bond strength of resin cement to Y-TZP. MATERIALS AND METHOD: In this experimental study, Y-TZP blocks (10×10×3mm(3)) were prepared and sintered and assigned into 4 groups (n=10) for coating including control group without any further surface treatment, sandblasted using 110μm alumina particles under 2.5 bar and tip distance of 10 mm, silica sol dip coating+calcination, aluminosilicate sol dip coating+ calcinations. To confirm chemical bonds of sol-gel covers, Fourier transforms infrared spectroscopy (FT-IR) technique was used. The surface of the sample was investigated by scanning electron microscopy (SEM), energy-dispersive spectroscopy detector (EDS) and x-ray diffraction (XRD) methods. Micro-shear bond strengths (µSBS) of zirconia-cement specimens were evaluated. Data were analyzed with a one-way ANOVA test in SPSS version 11.5 software with a confidence interval of 95%. RESULTS: µSBS of sandblasting, nano-silica, and nano-aluminosilicate specimens were significantly higher than control. µSBS of nano-silica was higher than other groups but no significant difference was observed in µSBS of sandblasting nano-silica, and nano-aluminosilicate groups (p> 0.05). CONCLUSION: Covering the zirconia surface with non-invasive nano-silica and nano-aluminosilicate using the sol-gel technique leads to improved cement bond strength. |
format | Online Article Text |
id | pubmed-7036355 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Shiraz University of Medical Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-70363552020-03-11 The Effect of Sandblasting and Coating of Zirconia by Nano Composites on Bond Strength of Zirconia to Resin Cements Karami Zarandi, Parisa Madani, Azamsadat Bagheri, Hosein Moslemion, Maryam J Dent (Shiraz) Original Article STATEMENT OF THE PROBLEM: Despite yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) high strength in dental restoration application, Zr- the framework has a low tendency to react chemically with cement which is the main reason of these restoration failures. PURPOSE: The aim of this in vitro study was to evaluate the effect of Y-TZP coating by nanocomposite of silica and aluminosilicate according to the sol-gel dip-coating technique on the bond strength of resin cement to Y-TZP. MATERIALS AND METHOD: In this experimental study, Y-TZP blocks (10×10×3mm(3)) were prepared and sintered and assigned into 4 groups (n=10) for coating including control group without any further surface treatment, sandblasted using 110μm alumina particles under 2.5 bar and tip distance of 10 mm, silica sol dip coating+calcination, aluminosilicate sol dip coating+ calcinations. To confirm chemical bonds of sol-gel covers, Fourier transforms infrared spectroscopy (FT-IR) technique was used. The surface of the sample was investigated by scanning electron microscopy (SEM), energy-dispersive spectroscopy detector (EDS) and x-ray diffraction (XRD) methods. Micro-shear bond strengths (µSBS) of zirconia-cement specimens were evaluated. Data were analyzed with a one-way ANOVA test in SPSS version 11.5 software with a confidence interval of 95%. RESULTS: µSBS of sandblasting, nano-silica, and nano-aluminosilicate specimens were significantly higher than control. µSBS of nano-silica was higher than other groups but no significant difference was observed in µSBS of sandblasting nano-silica, and nano-aluminosilicate groups (p> 0.05). CONCLUSION: Covering the zirconia surface with non-invasive nano-silica and nano-aluminosilicate using the sol-gel technique leads to improved cement bond strength. Shiraz University of Medical Sciences 2020-03 /pmc/articles/PMC7036355/ /pubmed/32158786 http://dx.doi.org/10.30476/DENTJODS.2019.77789.0 Text en Copyright: © 2020: Journal of dentistry (Shiraz) http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License, ( http://creativecommons.org/licenses/by/4.0/ ) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Karami Zarandi, Parisa Madani, Azamsadat Bagheri, Hosein Moslemion, Maryam The Effect of Sandblasting and Coating of Zirconia by Nano Composites on Bond Strength of Zirconia to Resin Cements |
title | The Effect of Sandblasting and Coating of Zirconia by Nano Composites on Bond Strength of Zirconia to Resin Cements |
title_full | The Effect of Sandblasting and Coating of Zirconia by Nano Composites on Bond Strength of Zirconia to Resin Cements |
title_fullStr | The Effect of Sandblasting and Coating of Zirconia by Nano Composites on Bond Strength of Zirconia to Resin Cements |
title_full_unstemmed | The Effect of Sandblasting and Coating of Zirconia by Nano Composites on Bond Strength of Zirconia to Resin Cements |
title_short | The Effect of Sandblasting and Coating of Zirconia by Nano Composites on Bond Strength of Zirconia to Resin Cements |
title_sort | effect of sandblasting and coating of zirconia by nano composites on bond strength of zirconia to resin cements |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036355/ https://www.ncbi.nlm.nih.gov/pubmed/32158786 http://dx.doi.org/10.30476/DENTJODS.2019.77789.0 |
work_keys_str_mv | AT karamizarandiparisa theeffectofsandblastingandcoatingofzirconiabynanocompositesonbondstrengthofzirconiatoresincements AT madaniazamsadat theeffectofsandblastingandcoatingofzirconiabynanocompositesonbondstrengthofzirconiatoresincements AT bagherihosein theeffectofsandblastingandcoatingofzirconiabynanocompositesonbondstrengthofzirconiatoresincements AT moslemionmaryam theeffectofsandblastingandcoatingofzirconiabynanocompositesonbondstrengthofzirconiatoresincements AT karamizarandiparisa effectofsandblastingandcoatingofzirconiabynanocompositesonbondstrengthofzirconiatoresincements AT madaniazamsadat effectofsandblastingandcoatingofzirconiabynanocompositesonbondstrengthofzirconiatoresincements AT bagherihosein effectofsandblastingandcoatingofzirconiabynanocompositesonbondstrengthofzirconiatoresincements AT moslemionmaryam effectofsandblastingandcoatingofzirconiabynanocompositesonbondstrengthofzirconiatoresincements |