Cargando…
A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis
Introduction: Longitudinal magnetic resonance imaging (MRI) has an important role in multiple sclerosis (MS) diagnosis and follow-up. Specifically, the presence of new T2-w lesions on brain MR scans is considered a predictive biomarker for the disease. In this study, we propose a fully convolutional...
Autores principales: | Salem, Mostafa, Valverde, Sergi, Cabezas, Mariano, Pareto, Deborah, Oliver, Arnau, Salvi, Joaquim, Rovira, Àlex, Lladó, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036701/ https://www.ncbi.nlm.nih.gov/pubmed/31918065 http://dx.doi.org/10.1016/j.nicl.2019.102149 |
Ejemplares similares
-
A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis
por: Salem, Mostafa, et al.
Publicado: (2017) -
One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks
por: Valverde, Sergi, et al.
Publicado: (2018) -
Evaluating the effect of multiple sclerosis lesions on automatic brain structure segmentation
por: González-Villà, Sandra, et al.
Publicado: (2017) -
Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling
por: Valverde, Sergi, et al.
Publicado: (2015) -
Evaluating the use of synthetic T1-w images in new T2 lesion detection in multiple sclerosis
por: Valencia, Liliana, et al.
Publicado: (2022)