Cargando…
Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED Displays
[Image: see text] Zinc nitride (Zn(3)N(2)) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast flue...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036766/ https://www.ncbi.nlm.nih.gov/pubmed/32118200 http://dx.doi.org/10.1021/acsanm.9b01714 |
_version_ | 1783500269952172032 |
---|---|
author | Ahumada-Lazo, Ruben Fairclough, Simon M. Hardman, Samantha J. O. Taylor, Peter N. Green, Mark Haigh, Sarah J. Saran, Rinku Curry, Richard J. Binks, David J. |
author_facet | Ahumada-Lazo, Ruben Fairclough, Simon M. Hardman, Samantha J. O. Taylor, Peter N. Green, Mark Haigh, Sarah J. Saran, Rinku Curry, Richard J. Binks, David J. |
author_sort | Ahumada-Lazo, Ruben |
collection | PubMed |
description | [Image: see text] Zinc nitride (Zn(3)N(2)) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast fluence-dependent transient absorption. The absorption and emission energies are observed to be size-tunable, with the optical band gap increasing from 1.5 to 3.2 eV as the dot diameter decreased from 8.9 to 2.7 nm. Size-dependent absorption cross sections (σ = 1.22 ± 0.02 × 10(–15) to 2.04 ± 0.03 × 10(–15) cm(2)), single exciton lifetimes (0.36 ± 0.02 to 0.65 ± 0.03 ns), as well as Auger recombination lifetimes of biexcitons (3.2 ± 0.4 to 5.0 ± 0.1 ps) and trions (20.8 ± 1.8 to 46.3 ± 1.3 ps) are also measured. The degeneracy of the conduction band minimum (g = 2) is determined from the analysis of the transient absorption spectra at different excitation fluences. The performance of Zn(3)N(2) colloidal quantum dots thus broadly matches that of established visible light emitting quantum dots based on toxic or rare elements, making them a viable alternative for QD-LED displays. |
format | Online Article Text |
id | pubmed-7036766 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-70367662020-02-26 Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED Displays Ahumada-Lazo, Ruben Fairclough, Simon M. Hardman, Samantha J. O. Taylor, Peter N. Green, Mark Haigh, Sarah J. Saran, Rinku Curry, Richard J. Binks, David J. ACS Appl Nano Mater [Image: see text] Zinc nitride (Zn(3)N(2)) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast fluence-dependent transient absorption. The absorption and emission energies are observed to be size-tunable, with the optical band gap increasing from 1.5 to 3.2 eV as the dot diameter decreased from 8.9 to 2.7 nm. Size-dependent absorption cross sections (σ = 1.22 ± 0.02 × 10(–15) to 2.04 ± 0.03 × 10(–15) cm(2)), single exciton lifetimes (0.36 ± 0.02 to 0.65 ± 0.03 ns), as well as Auger recombination lifetimes of biexcitons (3.2 ± 0.4 to 5.0 ± 0.1 ps) and trions (20.8 ± 1.8 to 46.3 ± 1.3 ps) are also measured. The degeneracy of the conduction band minimum (g = 2) is determined from the analysis of the transient absorption spectra at different excitation fluences. The performance of Zn(3)N(2) colloidal quantum dots thus broadly matches that of established visible light emitting quantum dots based on toxic or rare elements, making them a viable alternative for QD-LED displays. American Chemical Society 2019-10-28 2019-11-22 /pmc/articles/PMC7036766/ /pubmed/32118200 http://dx.doi.org/10.1021/acsanm.9b01714 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Ahumada-Lazo, Ruben Fairclough, Simon M. Hardman, Samantha J. O. Taylor, Peter N. Green, Mark Haigh, Sarah J. Saran, Rinku Curry, Richard J. Binks, David J. Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED Displays |
title | Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED
Displays |
title_full | Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED
Displays |
title_fullStr | Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED
Displays |
title_full_unstemmed | Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED
Displays |
title_short | Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED
Displays |
title_sort | confinement effects and charge dynamics in zn(3)n(2) colloidal quantum dots: implications for qd-led
displays |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036766/ https://www.ncbi.nlm.nih.gov/pubmed/32118200 http://dx.doi.org/10.1021/acsanm.9b01714 |
work_keys_str_mv | AT ahumadalazoruben confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays AT faircloughsimonm confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays AT hardmansamanthajo confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays AT taylorpetern confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays AT greenmark confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays AT haighsarahj confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays AT saranrinku confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays AT curryrichardj confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays AT binksdavidj confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays |