Cargando…

Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED Displays

[Image: see text] Zinc nitride (Zn(3)N(2)) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast flue...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahumada-Lazo, Ruben, Fairclough, Simon M., Hardman, Samantha J. O., Taylor, Peter N., Green, Mark, Haigh, Sarah J., Saran, Rinku, Curry, Richard J., Binks, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036766/
https://www.ncbi.nlm.nih.gov/pubmed/32118200
http://dx.doi.org/10.1021/acsanm.9b01714
_version_ 1783500269952172032
author Ahumada-Lazo, Ruben
Fairclough, Simon M.
Hardman, Samantha J. O.
Taylor, Peter N.
Green, Mark
Haigh, Sarah J.
Saran, Rinku
Curry, Richard J.
Binks, David J.
author_facet Ahumada-Lazo, Ruben
Fairclough, Simon M.
Hardman, Samantha J. O.
Taylor, Peter N.
Green, Mark
Haigh, Sarah J.
Saran, Rinku
Curry, Richard J.
Binks, David J.
author_sort Ahumada-Lazo, Ruben
collection PubMed
description [Image: see text] Zinc nitride (Zn(3)N(2)) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast fluence-dependent transient absorption. The absorption and emission energies are observed to be size-tunable, with the optical band gap increasing from 1.5 to 3.2 eV as the dot diameter decreased from 8.9 to 2.7 nm. Size-dependent absorption cross sections (σ = 1.22 ± 0.02 × 10(–15) to 2.04 ± 0.03 × 10(–15) cm(2)), single exciton lifetimes (0.36 ± 0.02 to 0.65 ± 0.03 ns), as well as Auger recombination lifetimes of biexcitons (3.2 ± 0.4 to 5.0 ± 0.1 ps) and trions (20.8 ± 1.8 to 46.3 ± 1.3 ps) are also measured. The degeneracy of the conduction band minimum (g = 2) is determined from the analysis of the transient absorption spectra at different excitation fluences. The performance of Zn(3)N(2) colloidal quantum dots thus broadly matches that of established visible light emitting quantum dots based on toxic or rare elements, making them a viable alternative for QD-LED displays.
format Online
Article
Text
id pubmed-7036766
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-70367662020-02-26 Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED Displays Ahumada-Lazo, Ruben Fairclough, Simon M. Hardman, Samantha J. O. Taylor, Peter N. Green, Mark Haigh, Sarah J. Saran, Rinku Curry, Richard J. Binks, David J. ACS Appl Nano Mater [Image: see text] Zinc nitride (Zn(3)N(2)) colloidal quantum dots are composed of nontoxic, low-cost, and earth-abundant elements. The effects of quantum confinement on the optical properties and charge dynamics of these dots are studied using steady-state optical characterization and ultrafast fluence-dependent transient absorption. The absorption and emission energies are observed to be size-tunable, with the optical band gap increasing from 1.5 to 3.2 eV as the dot diameter decreased from 8.9 to 2.7 nm. Size-dependent absorption cross sections (σ = 1.22 ± 0.02 × 10(–15) to 2.04 ± 0.03 × 10(–15) cm(2)), single exciton lifetimes (0.36 ± 0.02 to 0.65 ± 0.03 ns), as well as Auger recombination lifetimes of biexcitons (3.2 ± 0.4 to 5.0 ± 0.1 ps) and trions (20.8 ± 1.8 to 46.3 ± 1.3 ps) are also measured. The degeneracy of the conduction band minimum (g = 2) is determined from the analysis of the transient absorption spectra at different excitation fluences. The performance of Zn(3)N(2) colloidal quantum dots thus broadly matches that of established visible light emitting quantum dots based on toxic or rare elements, making them a viable alternative for QD-LED displays. American Chemical Society 2019-10-28 2019-11-22 /pmc/articles/PMC7036766/ /pubmed/32118200 http://dx.doi.org/10.1021/acsanm.9b01714 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Ahumada-Lazo, Ruben
Fairclough, Simon M.
Hardman, Samantha J. O.
Taylor, Peter N.
Green, Mark
Haigh, Sarah J.
Saran, Rinku
Curry, Richard J.
Binks, David J.
Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED Displays
title Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED Displays
title_full Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED Displays
title_fullStr Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED Displays
title_full_unstemmed Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED Displays
title_short Confinement Effects and Charge Dynamics in Zn(3)N(2) Colloidal Quantum Dots: Implications for QD-LED Displays
title_sort confinement effects and charge dynamics in zn(3)n(2) colloidal quantum dots: implications for qd-led displays
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036766/
https://www.ncbi.nlm.nih.gov/pubmed/32118200
http://dx.doi.org/10.1021/acsanm.9b01714
work_keys_str_mv AT ahumadalazoruben confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays
AT faircloughsimonm confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays
AT hardmansamanthajo confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays
AT taylorpetern confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays
AT greenmark confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays
AT haighsarahj confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays
AT saranrinku confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays
AT curryrichardj confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays
AT binksdavidj confinementeffectsandchargedynamicsinzn3n2colloidalquantumdotsimplicationsforqdleddisplays