Cargando…
Bone Mineral Affinity of Polyphosphodiesters
Biomimetic molecular design is a promising approach for generating functional biomaterials such as cell membrane mimetic blood-compatible surfaces, mussel-inspired bioadhesives, and calcium phosphate cements for bone regeneration. Polyphosphoesters (PPEs) are candidate biomimetic polymer biomaterial...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036841/ https://www.ncbi.nlm.nih.gov/pubmed/32050545 http://dx.doi.org/10.3390/molecules25030758 |
_version_ | 1783500287485411328 |
---|---|
author | Iwasaki, Yasuhiko |
author_facet | Iwasaki, Yasuhiko |
author_sort | Iwasaki, Yasuhiko |
collection | PubMed |
description | Biomimetic molecular design is a promising approach for generating functional biomaterials such as cell membrane mimetic blood-compatible surfaces, mussel-inspired bioadhesives, and calcium phosphate cements for bone regeneration. Polyphosphoesters (PPEs) are candidate biomimetic polymer biomaterials that are of interest due to their biocompatibility, biodegradability, and structural similarity to nucleic acids. While studies on the synthesis of PPEs began in the 1970s, the scope of their use as biomaterials has increased in the last 20 years. One advantageous property of PPEs is their molecular diversity due to the presence of multivalent phosphorus in their backbones, which allows their physicochemical and biointerfacial properties to be easily controlled to produce the desired molecular platforms for functional biomaterials. Polyphosphodiesters (PPDEs) are analogs of PPEs that have recently attracted interest due to their strong affinity for biominerals. This review describes the fundamental properties of PPDEs and recent research in the field of macromolecular bone therapeutics. |
format | Online Article Text |
id | pubmed-7036841 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70368412020-03-11 Bone Mineral Affinity of Polyphosphodiesters Iwasaki, Yasuhiko Molecules Review Biomimetic molecular design is a promising approach for generating functional biomaterials such as cell membrane mimetic blood-compatible surfaces, mussel-inspired bioadhesives, and calcium phosphate cements for bone regeneration. Polyphosphoesters (PPEs) are candidate biomimetic polymer biomaterials that are of interest due to their biocompatibility, biodegradability, and structural similarity to nucleic acids. While studies on the synthesis of PPEs began in the 1970s, the scope of their use as biomaterials has increased in the last 20 years. One advantageous property of PPEs is their molecular diversity due to the presence of multivalent phosphorus in their backbones, which allows their physicochemical and biointerfacial properties to be easily controlled to produce the desired molecular platforms for functional biomaterials. Polyphosphodiesters (PPDEs) are analogs of PPEs that have recently attracted interest due to their strong affinity for biominerals. This review describes the fundamental properties of PPDEs and recent research in the field of macromolecular bone therapeutics. MDPI 2020-02-10 /pmc/articles/PMC7036841/ /pubmed/32050545 http://dx.doi.org/10.3390/molecules25030758 Text en © 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Iwasaki, Yasuhiko Bone Mineral Affinity of Polyphosphodiesters |
title | Bone Mineral Affinity of Polyphosphodiesters |
title_full | Bone Mineral Affinity of Polyphosphodiesters |
title_fullStr | Bone Mineral Affinity of Polyphosphodiesters |
title_full_unstemmed | Bone Mineral Affinity of Polyphosphodiesters |
title_short | Bone Mineral Affinity of Polyphosphodiesters |
title_sort | bone mineral affinity of polyphosphodiesters |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036841/ https://www.ncbi.nlm.nih.gov/pubmed/32050545 http://dx.doi.org/10.3390/molecules25030758 |
work_keys_str_mv | AT iwasakiyasuhiko bonemineralaffinityofpolyphosphodiesters |