Cargando…

Phyllotaxis Turns Over a New Leaf—A New Hypothesis

Phyllotaxis describes the periodic arrangement of plant organs most conspicuously floral. Oscillators generally underlie periodic phenomena. A hypothetical algorithm generates phyllotaxis regulated by the Hechtian growth oscillator of the stem apical meristem (SAM) protoderm. The oscillator integrat...

Descripción completa

Detalles Bibliográficos
Autores principales: Lamport, Derek T. A., Tan, Li, Held, Michael, Kieliszewski, Marcia J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037126/
https://www.ncbi.nlm.nih.gov/pubmed/32050457
http://dx.doi.org/10.3390/ijms21031145
_version_ 1783500354271313920
author Lamport, Derek T. A.
Tan, Li
Held, Michael
Kieliszewski, Marcia J.
author_facet Lamport, Derek T. A.
Tan, Li
Held, Michael
Kieliszewski, Marcia J.
author_sort Lamport, Derek T. A.
collection PubMed
description Phyllotaxis describes the periodic arrangement of plant organs most conspicuously floral. Oscillators generally underlie periodic phenomena. A hypothetical algorithm generates phyllotaxis regulated by the Hechtian growth oscillator of the stem apical meristem (SAM) protoderm. The oscillator integrates biochemical and mechanical force that regulate morphogenetic gradients of three ionic species, auxin, protons and Ca(2+). Hechtian adhesion between cell wall and plasma membrane transduces wall stress that opens Ca(2+) channels and reorients auxin efflux “PIN” proteins; they control the auxin-activated proton pump that dissociates Ca(2+) bound by periplasmic arabinogalactan proteins (AGP-Ca(2+)) hence the source of cytosolic Ca(2+) waves that activate exocytosis of wall precursors, AGPs and PIN proteins essential for morphogenesis. This novel approach identifies the critical determinants of an algorithm that generates phyllotaxis spiral and Fibonaccian symmetry: these determinants in order of their relative contribution are: (1) size of the apical meristem and the AGP-Ca(2+) capacitor; (2) proton pump activity; (3) auxin efflux proteins; (4) Ca(2+) channel activity; (5) Hechtian adhesion that mediates the cell wall stress vector. Arguably, AGPs and the AGP-Ca(2+) capacitor plays a decisive role in phyllotaxis periodicity and its evolutionary origins.
format Online
Article
Text
id pubmed-7037126
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70371262020-03-11 Phyllotaxis Turns Over a New Leaf—A New Hypothesis Lamport, Derek T. A. Tan, Li Held, Michael Kieliszewski, Marcia J. Int J Mol Sci Review Phyllotaxis describes the periodic arrangement of plant organs most conspicuously floral. Oscillators generally underlie periodic phenomena. A hypothetical algorithm generates phyllotaxis regulated by the Hechtian growth oscillator of the stem apical meristem (SAM) protoderm. The oscillator integrates biochemical and mechanical force that regulate morphogenetic gradients of three ionic species, auxin, protons and Ca(2+). Hechtian adhesion between cell wall and plasma membrane transduces wall stress that opens Ca(2+) channels and reorients auxin efflux “PIN” proteins; they control the auxin-activated proton pump that dissociates Ca(2+) bound by periplasmic arabinogalactan proteins (AGP-Ca(2+)) hence the source of cytosolic Ca(2+) waves that activate exocytosis of wall precursors, AGPs and PIN proteins essential for morphogenesis. This novel approach identifies the critical determinants of an algorithm that generates phyllotaxis spiral and Fibonaccian symmetry: these determinants in order of their relative contribution are: (1) size of the apical meristem and the AGP-Ca(2+) capacitor; (2) proton pump activity; (3) auxin efflux proteins; (4) Ca(2+) channel activity; (5) Hechtian adhesion that mediates the cell wall stress vector. Arguably, AGPs and the AGP-Ca(2+) capacitor plays a decisive role in phyllotaxis periodicity and its evolutionary origins. MDPI 2020-02-09 /pmc/articles/PMC7037126/ /pubmed/32050457 http://dx.doi.org/10.3390/ijms21031145 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Lamport, Derek T. A.
Tan, Li
Held, Michael
Kieliszewski, Marcia J.
Phyllotaxis Turns Over a New Leaf—A New Hypothesis
title Phyllotaxis Turns Over a New Leaf—A New Hypothesis
title_full Phyllotaxis Turns Over a New Leaf—A New Hypothesis
title_fullStr Phyllotaxis Turns Over a New Leaf—A New Hypothesis
title_full_unstemmed Phyllotaxis Turns Over a New Leaf—A New Hypothesis
title_short Phyllotaxis Turns Over a New Leaf—A New Hypothesis
title_sort phyllotaxis turns over a new leaf—a new hypothesis
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037126/
https://www.ncbi.nlm.nih.gov/pubmed/32050457
http://dx.doi.org/10.3390/ijms21031145
work_keys_str_mv AT lamportderekta phyllotaxisturnsoveranewleafanewhypothesis
AT tanli phyllotaxisturnsoveranewleafanewhypothesis
AT heldmichael phyllotaxisturnsoveranewleafanewhypothesis
AT kieliszewskimarciaj phyllotaxisturnsoveranewleafanewhypothesis