Cargando…

Chasing Particularities of Guanine- and Cytosine-Rich DNA Strands

By substitution of natural nucleotides by their abasic analogs (i.e., 1′,2′-dideoxyribose phosphate residue) at critically chosen positions within 27-bp DNA constructs originating from the first intron of N-myc gene, we hindered hybridization within the guanine- and cytosine-rich central region and...

Descripción completa

Detalles Bibliográficos
Autores principales: Trajkovski, Marko, Plavec, Janez
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037129/
https://www.ncbi.nlm.nih.gov/pubmed/31972988
http://dx.doi.org/10.3390/molecules25030434
Descripción
Sumario:By substitution of natural nucleotides by their abasic analogs (i.e., 1′,2′-dideoxyribose phosphate residue) at critically chosen positions within 27-bp DNA constructs originating from the first intron of N-myc gene, we hindered hybridization within the guanine- and cytosine-rich central region and followed formation of non-canonical structures. The impeded hybridization between the complementary strands leads to time-dependent structural transformations of guanine-rich strand that are herein characterized with the use of solution-state NMR, CD spectroscopy, and native polyacrylamide gel electrophoresis. Moreover, the DNA structural changes involve transformation of intra- into inter-molecular G-quadruplex structures that are thermodynamically favored. Intriguingly, the transition occurs in the presence of complementary cytosine-rich strands highlighting the inability of Watson–Crick base-pairing to preclude the transformation between G-quadruplex structures that occurs via intertwining mechanism and corroborates a role of G-quadruplex structures in DNA recombination processes.