Cargando…
Hepatotoxicity Modeling Using Counter-Propagation Artificial Neural Networks: Handling an Imbalanced Classification Problem
Drug-induced liver injury is a major concern in the drug development process. Expensive and time-consuming in vitro and in vivo studies do not reflect the complexity of the phenomenon. Complementary to wet lab methods are in silico approaches, which present a cost-efficient method for toxicity predi...
Autores principales: | Bajželj, Benjamin, Drgan, Viktor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037161/ https://www.ncbi.nlm.nih.gov/pubmed/31979300 http://dx.doi.org/10.3390/molecules25030481 |
Ejemplares similares
-
Application of Supervised SOM Algorithms in Predicting the Hepatotoxic Potential of Drugs
por: Drgan, Viktor, et al.
Publicado: (2021) -
CPANNatNIC software for counter-propagation neural network to assist in read-across
por: Drgan, Viktor, et al.
Publicado: (2017) -
Predictive Models for Compound Binding to Androgen and Estrogen Receptors Based on Counter-Propagation Artificial Neural Networks
por: Stanojević, Mark, et al.
Publicado: (2023) -
Modern synergetic neural network for imbalanced small data classification
por: Wang, Zihao, et al.
Publicado: (2023) -
An Asymmetric Contrastive Loss for Handling Imbalanced Datasets
por: Vito, Valentino, et al.
Publicado: (2022)