Cargando…

Characterization of a G-Quadruplex Structure in Pre-miRNA-1229 and in Its Alzheimer’s Disease-Associated Variant rs2291418: Implications for miRNA-1229 Maturation

Alzheimer’s disease (AD), the most common age-related neurodegenerative disease, is associated with various forms of cognitive and functional impairment that worsen with disease progression. AD is typically characterized as a protein misfolding disease, in which abnormal plaques form due to accumula...

Descripción completa

Detalles Bibliográficos
Autores principales: Imperatore, Joshua A., Then, McKenna L., McDougal, Keefe B., Mihailescu, Mihaela Rita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037302/
https://www.ncbi.nlm.nih.gov/pubmed/31991575
http://dx.doi.org/10.3390/ijms21030767
Descripción
Sumario:Alzheimer’s disease (AD), the most common age-related neurodegenerative disease, is associated with various forms of cognitive and functional impairment that worsen with disease progression. AD is typically characterized as a protein misfolding disease, in which abnormal plaques form due to accumulation of tau and β-amyloid (Aβ) proteins. An assortment of proteins is responsible for the processing and trafficking of Aβ, including sortilin-related receptor 1 (SORL1). Recently, a genome-wide association study of microRNA-related variants found that a single nucleotide polymorphism (SNP) rs2291418 within premature microRNA-1229 (pre-miRNA-1229) is significantly associated with AD. Moreover, the levels of the mature miRNA-1229-3p, which has been shown to regulate the SORL1 translation, are increased in the rs2291418 pre-miRNA-1229 variant. In this study we used various biophysical techniques to show that pre-miRNA-1229 forms a G-quadruplex secondary structure that coexists in equilibrium with the canonical hairpin structure, potentially controlling the production of the mature miR-1229-3p, and furthermore, that the AD-associated SNP rs2291418 pre-miR-1229 changes the equilibrium between these structures. Thus, the G-quadruplex structure we identified within pre-miRNA-1229 could potentially act as a novel therapeutic target in AD.