Cargando…
New Potent 5α- Reductase and Aromatase Inhibitors Derived from 1,2,3-Triazole Derivative
This work describes the utility of pyrazole-4-carbaldehyde 1 as starting material for the synthesis of a novel potent series of 5α-reductase and aromatase inhibitors derived from 1,2,3-triazole derivative. Condensation of 1 with active methylene and different amino pyrazoles produced the respective...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037409/ https://www.ncbi.nlm.nih.gov/pubmed/32033281 http://dx.doi.org/10.3390/molecules25030672 |
Sumario: | This work describes the utility of pyrazole-4-carbaldehyde 1 as starting material for the synthesis of a novel potent series of 5α-reductase and aromatase inhibitors derived from 1,2,3-triazole derivative. Condensation of 1 with active methylene and different amino pyrazoles produced the respective Schiff bases 2–4, 8 and 9. On the other hand, 1 was reacted with ethyl cyanoacetate and thiourea in one-pot reaction to afford the pyrazolo-6- thioxopyridin-2-[3H]-one (10). Moreover, α–β unsaturated chalcone derivative 11 was prepared via the reaction of compound 1 with P-methoxy acetophenone, which in turn reacted with each of ethyl cyanoacetate, malononitrile, hydrazine hydrate, and thiosemicarbazide to afford the corresponding pyridine and pyrazole derivatives 13, 14, 17, and 20. The structure of newly synthesized compounds was characterized by analytical and spectroscopic data (IR, MS and NMR). All new compounds were evaluated against 5α-reductase and aromatase inhibitors and the results showed that many of these compounds inhibit 5α-reductase and aromatase activity; compound 13 was found to be the highest potency among the tested samples comparing with the reference drugs. |
---|