Cargando…

Subcellular Localization of the TFF Peptides xP1 and xP4 in the Xenopus laevis Gastric/Esophageal Mucosa: Different Secretion Modes Reflecting Diverse Protective Functions

The TFF peptides xP1 and xP4 from Xenopus laevis are orthologs of TFF1 and TFF2, respectively. xP1 is secreted as a monomer from gastric surface mucous cells and is generally not associated with mucins, whereas xP4 is a typical secretory peptide from esophageal goblet cells, and gastric mucous neck...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwarz, Heinz, Hoffmann, Werner
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037415/
https://www.ncbi.nlm.nih.gov/pubmed/31979419
http://dx.doi.org/10.3390/ijms21030761
_version_ 1783500422708723712
author Schwarz, Heinz
Hoffmann, Werner
author_facet Schwarz, Heinz
Hoffmann, Werner
author_sort Schwarz, Heinz
collection PubMed
description The TFF peptides xP1 and xP4 from Xenopus laevis are orthologs of TFF1 and TFF2, respectively. xP1 is secreted as a monomer from gastric surface mucous cells and is generally not associated with mucins, whereas xP4 is a typical secretory peptide from esophageal goblet cells, and gastric mucous neck and antral gland cells tightly associated as a lectin with the ortholog of mucin MUC6. Both TFF peptides have diverse protective functions, xP1 as a scavenger for reactive oxygen species preventing oxidative damage and xP4 as a constituent of the water-insoluble adherent inner mucus barrier. Here, we present localization studies using immunofluorescence and immunoelectron microscopy. xP1 is concentrated in dense cores of secretory granules of surface mucous cells, whereas xP4 mixes with MUC6 in esophageal goblet cells. Of note, we observe two different types of goblet cells, which differ in their xP4 synthesis, and this is even visible morphologically at the electron microscopic level. xP4-negative granules are recognized by their halo, which is probably the result of shrinkage during the processing of samples for electron microscopy. Probably, the tight lectin binding of xP4 and MUC6 creates a crosslinked mucous network forming a stabile granule matrix, which prevents shrinkage.
format Online
Article
Text
id pubmed-7037415
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70374152020-03-11 Subcellular Localization of the TFF Peptides xP1 and xP4 in the Xenopus laevis Gastric/Esophageal Mucosa: Different Secretion Modes Reflecting Diverse Protective Functions Schwarz, Heinz Hoffmann, Werner Int J Mol Sci Article The TFF peptides xP1 and xP4 from Xenopus laevis are orthologs of TFF1 and TFF2, respectively. xP1 is secreted as a monomer from gastric surface mucous cells and is generally not associated with mucins, whereas xP4 is a typical secretory peptide from esophageal goblet cells, and gastric mucous neck and antral gland cells tightly associated as a lectin with the ortholog of mucin MUC6. Both TFF peptides have diverse protective functions, xP1 as a scavenger for reactive oxygen species preventing oxidative damage and xP4 as a constituent of the water-insoluble adherent inner mucus barrier. Here, we present localization studies using immunofluorescence and immunoelectron microscopy. xP1 is concentrated in dense cores of secretory granules of surface mucous cells, whereas xP4 mixes with MUC6 in esophageal goblet cells. Of note, we observe two different types of goblet cells, which differ in their xP4 synthesis, and this is even visible morphologically at the electron microscopic level. xP4-negative granules are recognized by their halo, which is probably the result of shrinkage during the processing of samples for electron microscopy. Probably, the tight lectin binding of xP4 and MUC6 creates a crosslinked mucous network forming a stabile granule matrix, which prevents shrinkage. MDPI 2020-01-23 /pmc/articles/PMC7037415/ /pubmed/31979419 http://dx.doi.org/10.3390/ijms21030761 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Schwarz, Heinz
Hoffmann, Werner
Subcellular Localization of the TFF Peptides xP1 and xP4 in the Xenopus laevis Gastric/Esophageal Mucosa: Different Secretion Modes Reflecting Diverse Protective Functions
title Subcellular Localization of the TFF Peptides xP1 and xP4 in the Xenopus laevis Gastric/Esophageal Mucosa: Different Secretion Modes Reflecting Diverse Protective Functions
title_full Subcellular Localization of the TFF Peptides xP1 and xP4 in the Xenopus laevis Gastric/Esophageal Mucosa: Different Secretion Modes Reflecting Diverse Protective Functions
title_fullStr Subcellular Localization of the TFF Peptides xP1 and xP4 in the Xenopus laevis Gastric/Esophageal Mucosa: Different Secretion Modes Reflecting Diverse Protective Functions
title_full_unstemmed Subcellular Localization of the TFF Peptides xP1 and xP4 in the Xenopus laevis Gastric/Esophageal Mucosa: Different Secretion Modes Reflecting Diverse Protective Functions
title_short Subcellular Localization of the TFF Peptides xP1 and xP4 in the Xenopus laevis Gastric/Esophageal Mucosa: Different Secretion Modes Reflecting Diverse Protective Functions
title_sort subcellular localization of the tff peptides xp1 and xp4 in the xenopus laevis gastric/esophageal mucosa: different secretion modes reflecting diverse protective functions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037415/
https://www.ncbi.nlm.nih.gov/pubmed/31979419
http://dx.doi.org/10.3390/ijms21030761
work_keys_str_mv AT schwarzheinz subcellularlocalizationofthetffpeptidesxp1andxp4inthexenopuslaevisgastricesophagealmucosadifferentsecretionmodesreflectingdiverseprotectivefunctions
AT hoffmannwerner subcellularlocalizationofthetffpeptidesxp1andxp4inthexenopuslaevisgastricesophagealmucosadifferentsecretionmodesreflectingdiverseprotectivefunctions