Cargando…

Data Prediction of Mobile Network Traffic in Public Scenes by SOS-vSVR Method

Accurate base station traffic data in a public place with large changes in the amount of people could help predict the occurrence of network congestion, which would allow us to effectively allocate network resources. This is of great significance for festival network support, routine maintenance, an...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Xiaoliang, Lai, Wenhao, Chen, Hualiang, Fang, Shen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037419/
https://www.ncbi.nlm.nih.gov/pubmed/31978957
http://dx.doi.org/10.3390/s20030603
Descripción
Sumario:Accurate base station traffic data in a public place with large changes in the amount of people could help predict the occurrence of network congestion, which would allow us to effectively allocate network resources. This is of great significance for festival network support, routine maintenance, and resource scheduling. However, there are a few related reports on base station traffic prediction, especially base station traffic prediction in public scenes with fluctuations in people flow. This study proposes a public scene traffic data prediction method, which is based on a [Formula: see text] Support Vector Regression (vSVR) algorithm. To achieve optimal prediction of traffic, a symbiotic organisms search (SOS) was adopted to optimize the vSVR parameters. Meanwhile, the optimal input time step was determined through a large number of experiments. Experimental data was obtained at the base station of Huainan Wanda Plaza, in the Anhui province of China, for three months, with the granularity being one hour. To verify the predictive performance of vSVR, the classic regression algorithm extreme learning machine (ELM) and variational Bayesian Linear Regression (vBLR) were used. Their optimal prediction results were compared with vSVR predictions. Experimental results show that the prediction results from SOS-vSVR were the best. Outcomes of this study could provide guidance for preventing network congestion and improving the user experience.