Cargando…
C-RNNCrispr: Prediction of CRISPR/Cas9 sgRNA activity using convolutional and recurrent neural networks
CRISPR/Cas9 is a hot genomic editing tool, but its success is limited by the widely varying target efficiencies among different single guide RNAs (sgRNAs). In this study, we proposed C-RNNCrispr, a hybrid convolutional neural networks (CNNs) and bidirectional gate recurrent unit network (BGRU) frame...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037582/ https://www.ncbi.nlm.nih.gov/pubmed/32123556 http://dx.doi.org/10.1016/j.csbj.2020.01.013 |
Sumario: | CRISPR/Cas9 is a hot genomic editing tool, but its success is limited by the widely varying target efficiencies among different single guide RNAs (sgRNAs). In this study, we proposed C-RNNCrispr, a hybrid convolutional neural networks (CNNs) and bidirectional gate recurrent unit network (BGRU) framework, to predict CRISPR/Cas9 sgRNA on-target activity. C-RNNCrispr consists of two branches: sgRNA branch and epigenetic branch. The network receives the encoded binary matrix of sgRNA sequence and four epigenetic features as inputs, and produces a regression score. We introduced a transfer learning approach by using small-size datasets to fine-tune C-RNNCrispr model that were pre-trained from benchmark dataset, leading to substantially improved predictive performance. Experiments on commonly used datasets showed C-RNNCrispr outperforms the state-of-the-art methods in terms of prediction accuracy and generalization. Source codes are available at https://github.com/Peppags/C_RNNCrispr. |
---|