Cargando…
C-RNNCrispr: Prediction of CRISPR/Cas9 sgRNA activity using convolutional and recurrent neural networks
CRISPR/Cas9 is a hot genomic editing tool, but its success is limited by the widely varying target efficiencies among different single guide RNAs (sgRNAs). In this study, we proposed C-RNNCrispr, a hybrid convolutional neural networks (CNNs) and bidirectional gate recurrent unit network (BGRU) frame...
Autores principales: | Zhang, Guishan, Dai, Zhiming, Dai, Xianhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037582/ https://www.ncbi.nlm.nih.gov/pubmed/32123556 http://dx.doi.org/10.1016/j.csbj.2020.01.013 |
Ejemplares similares
-
Prediction of CRISPR/Cas9 single guide RNA cleavage efficiency and specificity by attention-based convolutional neural networks
por: Zhang, Guishan, et al.
Publicado: (2021) -
Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by a Cas9/sgRNA-assisted reverse PCR technique
por: Zhang, Beibei, et al.
Publicado: (2021) -
Prediction of sgRNA Off-Target Activity in CRISPR/Cas9 Gene Editing Using Graph Convolution Network
por: Vinodkumar, Prasoon Kumar, et al.
Publicado: (2021) -
Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency
por: Dang, Ying, et al.
Publicado: (2015) -
Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression
por: Long, Lu, et al.
Publicado: (2018)