Cargando…
Advanced Methodology and Preliminary Measurements of Molecular and Mechanical Properties of Heart Valves under Dynamic Strain
Mammalian heart valves are soft tissue assemblies with multi-scale material properties. This is because they are constructs comprising both muscle and non-contractile extracellular matrix proteins (such as collagens and proteoglycans) and transition regions where one form of tissue structure becomes...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037596/ https://www.ncbi.nlm.nih.gov/pubmed/31991583 http://dx.doi.org/10.3390/ijms21030763 |
_version_ | 1783500461033127936 |
---|---|
author | Madhurapantula, Rama S. Krell, Gabriel Morfin, Berenice Roy, Rajarshi Lister, Kevin Orgel, Joseph P.R.O. |
author_facet | Madhurapantula, Rama S. Krell, Gabriel Morfin, Berenice Roy, Rajarshi Lister, Kevin Orgel, Joseph P.R.O. |
author_sort | Madhurapantula, Rama S. |
collection | PubMed |
description | Mammalian heart valves are soft tissue assemblies with multi-scale material properties. This is because they are constructs comprising both muscle and non-contractile extracellular matrix proteins (such as collagens and proteoglycans) and transition regions where one form of tissue structure becomes another, significantly different form. The leaflets of the mitral and tricuspid valves are connected to chordae tendinae which, in turn, bind through papillary muscles to the cardiac wall of the ventricle. The transition regions between these tissue subsets are complex and diffuse. Their material composition and mechanical properties have not been previously described with both micro and nanoscopic data recorded simultaneously, as reported here. Annotating the mechanical characteristics of these tissue transitions will be of great value in developing novel implants, improving the state of the surgical simulators and advancing robot-assisted surgery. We present here developments in multi-scale methodology that produce data that can relate mechanical properties to molecular structure using scanning X-ray diffraction. We correlate these data to corresponding tissue level (macro and microscopic) stress and strain, with particular emphasis on the transition regions and present analyses to indicate points of possible failure in these tissues. |
format | Online Article Text |
id | pubmed-7037596 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70375962020-03-11 Advanced Methodology and Preliminary Measurements of Molecular and Mechanical Properties of Heart Valves under Dynamic Strain Madhurapantula, Rama S. Krell, Gabriel Morfin, Berenice Roy, Rajarshi Lister, Kevin Orgel, Joseph P.R.O. Int J Mol Sci Article Mammalian heart valves are soft tissue assemblies with multi-scale material properties. This is because they are constructs comprising both muscle and non-contractile extracellular matrix proteins (such as collagens and proteoglycans) and transition regions where one form of tissue structure becomes another, significantly different form. The leaflets of the mitral and tricuspid valves are connected to chordae tendinae which, in turn, bind through papillary muscles to the cardiac wall of the ventricle. The transition regions between these tissue subsets are complex and diffuse. Their material composition and mechanical properties have not been previously described with both micro and nanoscopic data recorded simultaneously, as reported here. Annotating the mechanical characteristics of these tissue transitions will be of great value in developing novel implants, improving the state of the surgical simulators and advancing robot-assisted surgery. We present here developments in multi-scale methodology that produce data that can relate mechanical properties to molecular structure using scanning X-ray diffraction. We correlate these data to corresponding tissue level (macro and microscopic) stress and strain, with particular emphasis on the transition regions and present analyses to indicate points of possible failure in these tissues. MDPI 2020-01-24 /pmc/articles/PMC7037596/ /pubmed/31991583 http://dx.doi.org/10.3390/ijms21030763 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Madhurapantula, Rama S. Krell, Gabriel Morfin, Berenice Roy, Rajarshi Lister, Kevin Orgel, Joseph P.R.O. Advanced Methodology and Preliminary Measurements of Molecular and Mechanical Properties of Heart Valves under Dynamic Strain |
title | Advanced Methodology and Preliminary Measurements of Molecular and Mechanical Properties of Heart Valves under Dynamic Strain |
title_full | Advanced Methodology and Preliminary Measurements of Molecular and Mechanical Properties of Heart Valves under Dynamic Strain |
title_fullStr | Advanced Methodology and Preliminary Measurements of Molecular and Mechanical Properties of Heart Valves under Dynamic Strain |
title_full_unstemmed | Advanced Methodology and Preliminary Measurements of Molecular and Mechanical Properties of Heart Valves under Dynamic Strain |
title_short | Advanced Methodology and Preliminary Measurements of Molecular and Mechanical Properties of Heart Valves under Dynamic Strain |
title_sort | advanced methodology and preliminary measurements of molecular and mechanical properties of heart valves under dynamic strain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037596/ https://www.ncbi.nlm.nih.gov/pubmed/31991583 http://dx.doi.org/10.3390/ijms21030763 |
work_keys_str_mv | AT madhurapantularamas advancedmethodologyandpreliminarymeasurementsofmolecularandmechanicalpropertiesofheartvalvesunderdynamicstrain AT krellgabriel advancedmethodologyandpreliminarymeasurementsofmolecularandmechanicalpropertiesofheartvalvesunderdynamicstrain AT morfinberenice advancedmethodologyandpreliminarymeasurementsofmolecularandmechanicalpropertiesofheartvalvesunderdynamicstrain AT royrajarshi advancedmethodologyandpreliminarymeasurementsofmolecularandmechanicalpropertiesofheartvalvesunderdynamicstrain AT listerkevin advancedmethodologyandpreliminarymeasurementsofmolecularandmechanicalpropertiesofheartvalvesunderdynamicstrain AT orgeljosephpro advancedmethodologyandpreliminarymeasurementsofmolecularandmechanicalpropertiesofheartvalvesunderdynamicstrain |