Cargando…
Analysis of Aldo–Keto Reductase Gene Family and Their Responses to Salt, Drought, and Abscisic Acid Stresses in Medicago truncatula
Salt and drought stresses are two primary abiotic stresses that inhibit growth and reduce the activity of photosynthetic apparatus in plants. Abscisic acid (ABA) plays a key role in abiotic stress regulation in plants. Some aldo–keto reductases (AKRs) can enhance various abiotic stresses resistance...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037683/ https://www.ncbi.nlm.nih.gov/pubmed/31979344 http://dx.doi.org/10.3390/ijms21030754 |
_version_ | 1783500480606896128 |
---|---|
author | Yu, Jie Sun, Hao Zhang, Jiaju Hou, Yiyao Zhang, Tiejun Kang, Junmei Wang, Zhen Yang, Qingchuan Long, Ruicai |
author_facet | Yu, Jie Sun, Hao Zhang, Jiaju Hou, Yiyao Zhang, Tiejun Kang, Junmei Wang, Zhen Yang, Qingchuan Long, Ruicai |
author_sort | Yu, Jie |
collection | PubMed |
description | Salt and drought stresses are two primary abiotic stresses that inhibit growth and reduce the activity of photosynthetic apparatus in plants. Abscisic acid (ABA) plays a key role in abiotic stress regulation in plants. Some aldo–keto reductases (AKRs) can enhance various abiotic stresses resistance by scavenging cytotoxic aldehydes in some plants. However, there are few comprehensive reports of plant AKR genes and their expression patterns in response to abiotic stresses. In this study, we identified 30 putative AKR genes from Medicago truncatula. The gene characteristics, coding protein motifs, and expression patterns of these MtAKRs were analyzed to explore and identify candidate genes in regulation of salt, drought, and ABA stresses. The phylogenetic analysis result indicated that the 52 AKRs in Medicago truncatula and Arabidopsis thaliana can be divided into three groups and six subgroups. Fifteen AKR genes in M. truncatula were randomly selected from each group or subgroup, to investigate their response to salt (200 mM of NaCl), drought (50 g·L(−1) of PEG 6000), and ABA (100 µM) stresses in both leaves and roots. The results suggest that MtAKR1, MtAKR5, MtAKR11, MtAKR14, MtAKR20, and MtAKR29 may play important roles in response to these stresses. |
format | Online Article Text |
id | pubmed-7037683 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70376832020-03-10 Analysis of Aldo–Keto Reductase Gene Family and Their Responses to Salt, Drought, and Abscisic Acid Stresses in Medicago truncatula Yu, Jie Sun, Hao Zhang, Jiaju Hou, Yiyao Zhang, Tiejun Kang, Junmei Wang, Zhen Yang, Qingchuan Long, Ruicai Int J Mol Sci Article Salt and drought stresses are two primary abiotic stresses that inhibit growth and reduce the activity of photosynthetic apparatus in plants. Abscisic acid (ABA) plays a key role in abiotic stress regulation in plants. Some aldo–keto reductases (AKRs) can enhance various abiotic stresses resistance by scavenging cytotoxic aldehydes in some plants. However, there are few comprehensive reports of plant AKR genes and their expression patterns in response to abiotic stresses. In this study, we identified 30 putative AKR genes from Medicago truncatula. The gene characteristics, coding protein motifs, and expression patterns of these MtAKRs were analyzed to explore and identify candidate genes in regulation of salt, drought, and ABA stresses. The phylogenetic analysis result indicated that the 52 AKRs in Medicago truncatula and Arabidopsis thaliana can be divided into three groups and six subgroups. Fifteen AKR genes in M. truncatula were randomly selected from each group or subgroup, to investigate their response to salt (200 mM of NaCl), drought (50 g·L(−1) of PEG 6000), and ABA (100 µM) stresses in both leaves and roots. The results suggest that MtAKR1, MtAKR5, MtAKR11, MtAKR14, MtAKR20, and MtAKR29 may play important roles in response to these stresses. MDPI 2020-01-23 /pmc/articles/PMC7037683/ /pubmed/31979344 http://dx.doi.org/10.3390/ijms21030754 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Jie Sun, Hao Zhang, Jiaju Hou, Yiyao Zhang, Tiejun Kang, Junmei Wang, Zhen Yang, Qingchuan Long, Ruicai Analysis of Aldo–Keto Reductase Gene Family and Their Responses to Salt, Drought, and Abscisic Acid Stresses in Medicago truncatula |
title | Analysis of Aldo–Keto Reductase Gene Family and Their Responses to Salt, Drought, and Abscisic Acid Stresses in Medicago truncatula |
title_full | Analysis of Aldo–Keto Reductase Gene Family and Their Responses to Salt, Drought, and Abscisic Acid Stresses in Medicago truncatula |
title_fullStr | Analysis of Aldo–Keto Reductase Gene Family and Their Responses to Salt, Drought, and Abscisic Acid Stresses in Medicago truncatula |
title_full_unstemmed | Analysis of Aldo–Keto Reductase Gene Family and Their Responses to Salt, Drought, and Abscisic Acid Stresses in Medicago truncatula |
title_short | Analysis of Aldo–Keto Reductase Gene Family and Their Responses to Salt, Drought, and Abscisic Acid Stresses in Medicago truncatula |
title_sort | analysis of aldo–keto reductase gene family and their responses to salt, drought, and abscisic acid stresses in medicago truncatula |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037683/ https://www.ncbi.nlm.nih.gov/pubmed/31979344 http://dx.doi.org/10.3390/ijms21030754 |
work_keys_str_mv | AT yujie analysisofaldoketoreductasegenefamilyandtheirresponsestosaltdroughtandabscisicacidstressesinmedicagotruncatula AT sunhao analysisofaldoketoreductasegenefamilyandtheirresponsestosaltdroughtandabscisicacidstressesinmedicagotruncatula AT zhangjiaju analysisofaldoketoreductasegenefamilyandtheirresponsestosaltdroughtandabscisicacidstressesinmedicagotruncatula AT houyiyao analysisofaldoketoreductasegenefamilyandtheirresponsestosaltdroughtandabscisicacidstressesinmedicagotruncatula AT zhangtiejun analysisofaldoketoreductasegenefamilyandtheirresponsestosaltdroughtandabscisicacidstressesinmedicagotruncatula AT kangjunmei analysisofaldoketoreductasegenefamilyandtheirresponsestosaltdroughtandabscisicacidstressesinmedicagotruncatula AT wangzhen analysisofaldoketoreductasegenefamilyandtheirresponsestosaltdroughtandabscisicacidstressesinmedicagotruncatula AT yangqingchuan analysisofaldoketoreductasegenefamilyandtheirresponsestosaltdroughtandabscisicacidstressesinmedicagotruncatula AT longruicai analysisofaldoketoreductasegenefamilyandtheirresponsestosaltdroughtandabscisicacidstressesinmedicagotruncatula |