Cargando…

Regioselective and Stereodivergent Synthesis of Enantiomerically Pure Vic-Diamines from Chiral β-Amino Alcohols with 2-Pyridyl and 6-(2,2′-Bipyridyl) Moieties †

In this report, we describe the synthetic elaboration of the easily available enantiomerically pure β-amino alcohols. Attempted direct substitution of the hydroxyl group by azido-functionality in the Mitsunobu reaction with hydrazoic acid was inefficient or led to a diastereomeric mixture. These out...

Descripción completa

Detalles Bibliográficos
Autores principales: Wosińska-Hrydczuk, Marzena, Boratyński, Przemysław J., Skarżewski, Jacek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037692/
https://www.ncbi.nlm.nih.gov/pubmed/32046110
http://dx.doi.org/10.3390/molecules25030727
Descripción
Sumario:In this report, we describe the synthetic elaboration of the easily available enantiomerically pure β-amino alcohols. Attempted direct substitution of the hydroxyl group by azido-functionality in the Mitsunobu reaction with hydrazoic acid was inefficient or led to a diastereomeric mixture. These outcomes resulted from the participation of aziridines. Intentionally performed internal Mitsunobu reaction of β-amino alcohols gave eight chiral aziridines in 45–82% yield. The structural and configuration identity of products was confirmed by NMR data compared to the DFT calculated GIAO values. For 1,2,3-trisubstituted aziridines slow configurational inversion at the endocyclic nitrogen atom was observed by NMR at room temperature. Moreover, when aziridine was titrated with Zn(OAc)(2) under NMR control, only one of two N-epimers directly participated in complexation. The aziridines underwent ring opening with HN(3) to form the corresponding azido amines as single regio- and diastereomers in 90–97% yield. Different results were obtained for 1,2-disubstituted and 1,2,3-trisubstituted aziridines. For the later aziridines ring closure and ring opening occurred at different carbon stereocenters, thus yielding products with two inverted configurations, compared to the starting amino alcohol. The 1,2-disubstituted aziridines produced azido amines of the same configuration as the starting β-amino alcohols. To obtain a complete series of diastereomeric vic-diamines, we converted the amino alcohols into cyclic sulfamidates, which reacted with sodium azide in S(N)2 reaction (25–58% overall yield). The azides obtained either way underwent the Staudinger reduction, giving a series of six new chiral vic-diamines of defined stereochemistries.