Cargando…

The Demonstration of an Aqp4/Tgf-Beta 1 Pathway in Murine Astrocytes Holds Implications for Both Neuromyelitis Optica and Progressive Multiple Sclerosis

The role exerted by Aquaporin 4 (AQP4) as a regulator of astrocyte immune functions has been poorly explored. A recent report demonstrates that under neuroinflammatory conditions, the expression of Aqp4 on murine astrocytes is mandatory for the effective control of acute inflammation in the central...

Descripción completa

Detalles Bibliográficos
Autor principal: Nataf, Serge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037715/
https://www.ncbi.nlm.nih.gov/pubmed/32033173
http://dx.doi.org/10.3390/ijms21031035
_version_ 1783500487820050432
author Nataf, Serge
author_facet Nataf, Serge
author_sort Nataf, Serge
collection PubMed
description The role exerted by Aquaporin 4 (AQP4) as a regulator of astrocyte immune functions has been poorly explored. A recent report demonstrates that under neuroinflammatory conditions, the expression of Aqp4 on murine astrocytes is mandatory for the effective control of acute inflammation in the central nervous system. Such an immunomodulatory function appears to be mediated by a promotion of the transforming growth factor beta 1 (Tgfb1) pathway. Here, these results are discussed in the context of neuromyelitis optica (NMO) and multiple sclerosis (MS) progressive forms. It is proposed that NMO and progressive MS might rely on opposite molecular mechanisms involving, in NMO, an acutely-defective AQP4/TGFB1 pathway and, in progressive MS, a chronically-stimulated AQP4/TGFB1 pathway. Data supporting the involvement of angiotensin II as a molecular link between AQP4 and TGFB1 are also reviewed.
format Online
Article
Text
id pubmed-7037715
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70377152020-03-10 The Demonstration of an Aqp4/Tgf-Beta 1 Pathway in Murine Astrocytes Holds Implications for Both Neuromyelitis Optica and Progressive Multiple Sclerosis Nataf, Serge Int J Mol Sci Commentary The role exerted by Aquaporin 4 (AQP4) as a regulator of astrocyte immune functions has been poorly explored. A recent report demonstrates that under neuroinflammatory conditions, the expression of Aqp4 on murine astrocytes is mandatory for the effective control of acute inflammation in the central nervous system. Such an immunomodulatory function appears to be mediated by a promotion of the transforming growth factor beta 1 (Tgfb1) pathway. Here, these results are discussed in the context of neuromyelitis optica (NMO) and multiple sclerosis (MS) progressive forms. It is proposed that NMO and progressive MS might rely on opposite molecular mechanisms involving, in NMO, an acutely-defective AQP4/TGFB1 pathway and, in progressive MS, a chronically-stimulated AQP4/TGFB1 pathway. Data supporting the involvement of angiotensin II as a molecular link between AQP4 and TGFB1 are also reviewed. MDPI 2020-02-04 /pmc/articles/PMC7037715/ /pubmed/32033173 http://dx.doi.org/10.3390/ijms21031035 Text en © 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Commentary
Nataf, Serge
The Demonstration of an Aqp4/Tgf-Beta 1 Pathway in Murine Astrocytes Holds Implications for Both Neuromyelitis Optica and Progressive Multiple Sclerosis
title The Demonstration of an Aqp4/Tgf-Beta 1 Pathway in Murine Astrocytes Holds Implications for Both Neuromyelitis Optica and Progressive Multiple Sclerosis
title_full The Demonstration of an Aqp4/Tgf-Beta 1 Pathway in Murine Astrocytes Holds Implications for Both Neuromyelitis Optica and Progressive Multiple Sclerosis
title_fullStr The Demonstration of an Aqp4/Tgf-Beta 1 Pathway in Murine Astrocytes Holds Implications for Both Neuromyelitis Optica and Progressive Multiple Sclerosis
title_full_unstemmed The Demonstration of an Aqp4/Tgf-Beta 1 Pathway in Murine Astrocytes Holds Implications for Both Neuromyelitis Optica and Progressive Multiple Sclerosis
title_short The Demonstration of an Aqp4/Tgf-Beta 1 Pathway in Murine Astrocytes Holds Implications for Both Neuromyelitis Optica and Progressive Multiple Sclerosis
title_sort demonstration of an aqp4/tgf-beta 1 pathway in murine astrocytes holds implications for both neuromyelitis optica and progressive multiple sclerosis
topic Commentary
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037715/
https://www.ncbi.nlm.nih.gov/pubmed/32033173
http://dx.doi.org/10.3390/ijms21031035
work_keys_str_mv AT natafserge thedemonstrationofanaqp4tgfbeta1pathwayinmurineastrocytesholdsimplicationsforbothneuromyelitisopticaandprogressivemultiplesclerosis
AT natafserge demonstrationofanaqp4tgfbeta1pathwayinmurineastrocytesholdsimplicationsforbothneuromyelitisopticaandprogressivemultiplesclerosis